Generalized $\sigma$-subnormal and $\sigma$-permutable subgroups of finite groups
Problemy fiziki, matematiki i tehniki, no. 3 (2021), pp. 76-81

Voir la notice de l'article provenant de la source Math-Net.Ru

Throughout the article, all groups are finite and $G$ always denotes a finite group. Moreover, $\sigma$ is some partition of the set of all primes $\mathbb{P}$, i. e. $\sigma=\{\sigma_i\mid i\in I\}$, where $\mathbb{P}=\bigcup_{i\in I}\sigma_i$ and $\sigma_i\cap\sigma_j=\varnothing$ for all $i\ne j$. A $\sigma$-property of a group is any of its properties that do not depend on the choice of the partition $\sigma$ of the set $\mathbb{P}$. This work is devoted to further the study of the $\sigma$-properties of a group. A lot of known results are generalized.
Keywords: finite group, $\sigma$-nilpotent group, $\sigma$-subnormal subgroup, Schmidt group.
Mots-clés : $\sigma$-soluble group
@article{PFMT_2021_3_a10,
     author = {I. N. Safonova and A. N. Skiba},
     title = {Generalized $\sigma$-subnormal and $\sigma$-permutable subgroups of finite groups},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {76--81},
     publisher = {mathdoc},
     number = {3},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2021_3_a10/}
}
TY  - JOUR
AU  - I. N. Safonova
AU  - A. N. Skiba
TI  - Generalized $\sigma$-subnormal and $\sigma$-permutable subgroups of finite groups
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2021
SP  - 76
EP  - 81
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2021_3_a10/
LA  - ru
ID  - PFMT_2021_3_a10
ER  - 
%0 Journal Article
%A I. N. Safonova
%A A. N. Skiba
%T Generalized $\sigma$-subnormal and $\sigma$-permutable subgroups of finite groups
%J Problemy fiziki, matematiki i tehniki
%D 2021
%P 76-81
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2021_3_a10/
%G ru
%F PFMT_2021_3_a10
I. N. Safonova; A. N. Skiba. Generalized $\sigma$-subnormal and $\sigma$-permutable subgroups of finite groups. Problemy fiziki, matematiki i tehniki, no. 3 (2021), pp. 76-81. http://geodesic.mathdoc.fr/item/PFMT_2021_3_a10/