Generalized $\sigma$-subnormal and $\sigma$-permutable subgroups of finite groups
Problemy fiziki, matematiki i tehniki, no. 3 (2021), pp. 76-81.

Voir la notice de l'article provenant de la source Math-Net.Ru

Throughout the article, all groups are finite and $G$ always denotes a finite group. Moreover, $\sigma$ is some partition of the set of all primes $\mathbb{P}$, i. e. $\sigma=\{\sigma_i\mid i\in I\}$, where $\mathbb{P}=\bigcup_{i\in I}\sigma_i$ and $\sigma_i\cap\sigma_j=\varnothing$ for all $i\ne j$. A $\sigma$-property of a group is any of its properties that do not depend on the choice of the partition $\sigma$ of the set $\mathbb{P}$. This work is devoted to further the study of the $\sigma$-properties of a group. A lot of known results are generalized.
Keywords: finite group, $\sigma$-nilpotent group, $\sigma$-subnormal subgroup, Schmidt group.
Mots-clés : $\sigma$-soluble group
@article{PFMT_2021_3_a10,
     author = {I. N. Safonova and A. N. Skiba},
     title = {Generalized $\sigma$-subnormal and $\sigma$-permutable subgroups of finite groups},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {76--81},
     publisher = {mathdoc},
     number = {3},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2021_3_a10/}
}
TY  - JOUR
AU  - I. N. Safonova
AU  - A. N. Skiba
TI  - Generalized $\sigma$-subnormal and $\sigma$-permutable subgroups of finite groups
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2021
SP  - 76
EP  - 81
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2021_3_a10/
LA  - ru
ID  - PFMT_2021_3_a10
ER  - 
%0 Journal Article
%A I. N. Safonova
%A A. N. Skiba
%T Generalized $\sigma$-subnormal and $\sigma$-permutable subgroups of finite groups
%J Problemy fiziki, matematiki i tehniki
%D 2021
%P 76-81
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2021_3_a10/
%G ru
%F PFMT_2021_3_a10
I. N. Safonova; A. N. Skiba. Generalized $\sigma$-subnormal and $\sigma$-permutable subgroups of finite groups. Problemy fiziki, matematiki i tehniki, no. 3 (2021), pp. 76-81. http://geodesic.mathdoc.fr/item/PFMT_2021_3_a10/

[1] L.A. Shemetkov, A.N. Skiba, Formatsii algebraicheskikh sistem, Nauka, M., 1989

[2] A.N. Skiba, “Some characterizations of finite $\sigma$-soluble $P\sigma T$-groups”, J. Algebra, 495:1 (2018), 114–129 | DOI | Zbl

[3] A.N. Skiba, “On sublattices of the subgroup lattice defined by formation Fitting sets”, J. Algebra, 550 (2020), 69–85 | DOI | Zbl

[4] A.N. Skiba, “On $\sigma$-subnormal and $\sigma$-permutable subgroups of finite groups”, J. Algebra, 436 (2015), 1–16 | DOI | Zbl

[5] H. Wielandt, “Eine Verallgemenerung der invarianten Untergruppen”, Math. Z., 45 (1939), 200–244 | DOI

[6] J.C. Beidleman, A.N. Skiba, “On $\tau_\sigma$-quasinormal subgroups of finite groups”, J. Group Theory, 20:5 (2017), 955–964 | DOI

[7] K.A. Al-Sharo, A.N. Skiba, “On finite groups with $\sigma$-subnormal Schmidt subgroups”, Comm. Algebra, 45 (2017), 4158–4165 | DOI | Zbl

[8] B. Hu, J. Huang, “On finite groups with generalized $\sigma$-subnormal Schmidt subgroups”, Comm. Algebra, 46:2 (2017), 1–8

[9] V.I. Murashka, “On a generalization of the concept of $S$-permutable subgroup of a finite group”, Acta Math. Hung., 155:2 (2018), 221–227 | DOI | Zbl

[10] B. Hu, J. Huang, A.N. Skiba, “Finite groups with only $\mathfrak{F}$-normal and $\mathfrak{F}$-abnormal subgroups”, J. Group Theory, 22:5 (2019), 915–926 | DOI | Zbl

[11] W. Guo, A.N. Skiba, “Finite groups whose $n$-maximal subgroups are $\sigma$-subnormal”, Sci. China Math., 62 (2019), 1355–1372 | DOI | Zbl

[12] A.N. Skiba, “On some classes of sublattices of the subgroup lattice”, J. Belarusian State Univ. Math. Informatics, 3 (2019), 35–47 | DOI | Zbl

[13] A. Ballester-Bolinches, S.F. Kamornikov, M.C. Pedraza-Aguilera, V. Perez-Calabuig, “On $\sigma$-subnormality criteria in finite $\sigma$-soluble groups”, RACSAM, 114:94 (2020) | DOI | Zbl

[14] A. Ballester-Bolinches, S.F. Kamornikov, M.C. Pedraza-Aguilera, X. Yi, “On $\sigma$-subnormal subgroups of factorised finite groups”, J. Algebra, 559 (2020), 195–202 | DOI | Zbl

[15] X. Yi, S.F. Kamornikov, “Finite groups with $\sigma$-subnormal Schmidt subgroups”, J. Algebra, 560 (2020), 181–191 | DOI | Zbl

[16] S.F. Kamornikov, V.N. Tyutyanov, “On $\sigma$-subnormal subgroups of finite groups”, Siberian Math. J., 60:2 (2020), 337–343

[17] S.F. Kamornikov, V.N. Tyutyanov, “On $\sigma$-subnormal subgroups of finite $3'$-groups”, Ukranian Math. J., 72:6 (2020), 806–811 | DOI | Zbl

[18] B. Hu, J. Huang, A.N. Skiba, “On the $\sigma$-nilpotent norm and the $\sigma$-nilpotent length of a finite group”, Glasgow Math. J., 63:1 (2021), 121–132 | DOI | Zbl

[19] A-Ming Liu, W. Guo, I.N. Safonova, A.N. Skiba, “$G$-covering subgroup systems for some classes of $\sigma$-soluble groups”, J. Algebra, 585 (2021), 280–293 | DOI | Zbl

[20] B. Hu, J. Huang, A.N. Skiba, “Finite groups with only $\mathfrak{F}$-normal and $\mathfrak{F}$-abnormal subgroups”, J. Group Theory, 22:5 (2019) | DOI

[21] Z. Chi, A.N. Skiba, “On two sublattices of the subgroup lattice of a finite group”, J. Group Theory, 22:6 (2019), 1035–1047 | DOI | Zbl

[22] Z. Chi, A.N. Skiba, “On a lattice characterization of finite soluble $PST$-groups”, Bull. Austral. Math. Soc., 101:2 (2019), 247–254 | DOI

[23] R. Schmidt, Subgroup Lattices of Groups, Walter de Gruyter, Berlin, 1994 | Zbl

[24] K. Doerk, T. Hawkes, Finite Soluble Groups, Walter de Gruyter, Berlin–New York, 1992

[25] A-Ming Liu, W. Guo, I.N. Safonova, A.N. Skiba, “A generalization of subnormality”, Mediterranean J. Math. (to appear)

[26] I.N. Safonova, A.N. Skiba, On some new ideas and results of the theory of $\sigma$-properties of a finite group, Preprint, 2020

[27] V.N. Semenchuk, “Konechnye gruppy s sistemami minimalnykh ne $\mathfrak{F}$-podgrupp”, Podgruppovoe stroenie konechnykh grupp, Nauka i Tekhnika, Minsk, 1981, 138–149

[28] V.S. Monakhov, V.N. Knyagina, “O konechnykh gruppakh s nekotorymi subnormalnymi podgruppami Shmidta”, Sibirsk. matem. zh., 45:6 (2004), 1316–1322 | Zbl

[29] I.V. Bliznets, V.M. Selkin, “Konechnye gruppy s modulyarnoi podgruppoi Shmidta”, Problemy fiziki, matematiki i tekhniki, 2019, no. 4 (41), 36–38

[30] W. Guo, A.N. Skiba, “Finite groups whose $n$-maximal subgroups are $\sigma$-subnormal”, Science in China Math., 62:7 (2019), 1355–1372 | DOI | Zbl

[31] A.E. Spencer, “Maximal nonnormal chains in finite groups”, Pacific J. Math., 27 (1968), 167–173 | DOI | Zbl

[32] R. Schmid, “Endliche Gruppen mit vilen modularen Untergruppen”, Abhan. Math. Sem. Univ. Hamburg, 34 (1970), 115–125 | DOI

[33] A. Ballester-Bolinches, R. Esteban-Romero, M. Asaad, Products of Finite Groups, Walter de Gruyter, Berlin–New York, 2010 | Zbl

[34] A. Ballester-Bolinches, J.C. Beidleman, H. Heineken, “Groups in which Sylow subgroups and subnormal subgroups permute”, Illinois J. Math., 1–2, Special issue in honor of Reinhold Baer (1902–1979) (2003), 63–69 | Zbl

[35] O.H. Kegel, “Sylow-Gruppen und Subnormalteiler endlicher Gruppen”, Math. Z., 78 (1962), 205–221 | DOI | Zbl

[36] W.E. Deskins, “On quasinormal subgroups of finite groups”, Math. Z., 82 (1963), 125–132 | DOI | Zbl

[37] I.M. Isaacs, “Semipermutable $\pi$-subgroups”, Arch. Math., 102 (2014), 1–6 | DOI | Zbl

[38] W. Guo, A.N. Skiba, “On $\Pi$-quasinormal subgroups of finite groups”, Monatshefte fur Mathematik, 185:3 (2016), 1–11 | DOI