Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PFMT_2021_3_a0, author = {V. N. Kapshai and A. A. Grishechkina}, title = {Relativistic partial {Green's} functions of scattering states characterized by orbital quantum number $l=1$}, journal = {Problemy fiziki, matematiki i tehniki}, pages = {7--13}, publisher = {mathdoc}, number = {3}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/PFMT_2021_3_a0/} }
TY - JOUR AU - V. N. Kapshai AU - A. A. Grishechkina TI - Relativistic partial Green's functions of scattering states characterized by orbital quantum number $l=1$ JO - Problemy fiziki, matematiki i tehniki PY - 2021 SP - 7 EP - 13 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PFMT_2021_3_a0/ LA - ru ID - PFMT_2021_3_a0 ER -
%0 Journal Article %A V. N. Kapshai %A A. A. Grishechkina %T Relativistic partial Green's functions of scattering states characterized by orbital quantum number $l=1$ %J Problemy fiziki, matematiki i tehniki %D 2021 %P 7-13 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/PFMT_2021_3_a0/ %G ru %F PFMT_2021_3_a0
V. N. Kapshai; A. A. Grishechkina. Relativistic partial Green's functions of scattering states characterized by orbital quantum number $l=1$. Problemy fiziki, matematiki i tehniki, no. 3 (2021), pp. 7-13. http://geodesic.mathdoc.fr/item/PFMT_2021_3_a0/
[1] V.N. Kapshai, T.A. Alferova, “One-dimensional relativistic problems on bound states and scattering for a superposition of two $\delta$ potentials”, Russian Physics Journal, 45:1 (2002), 1–9 | DOI
[2] V.N. Kapshai, S.I. Fialka, “Partial quasipotential equations in the relativistic configuration representation”, Russ. Phys. Journal, 60:10 (2018), 1696–1704 | DOI | Zbl
[3] V.N. Kapshai, T.A. Alferova, “Razlozhenie po matrichnym elementam UNP gruppy Lorentsa i integralnye uravneniya dlya relyativistskikh volnovykh funktsii”, sb. st., Kovariantnye metody v teoreticheskoi fizike, 4, In-t fiziki NAN Belarusi, Minsk, 1997, 88–95
[4] G.B. Arfken, H.J. Weber, F.E. Harris, Mathematical methods for physicists, 7th ed., Elsevier, New York, 2013, 1205 pp. | Zbl
[5] A.O. Gelfond, Vychety i ikh prilozheniya, Lenand, M., 2018, 114 pp.
[6] A.D. Wunsch, Complex variables with applications, 3rd ed., PAW, New York, 2005, 676 pp.
[7] Dzh. Teilor, Teoriya rasseyaniya: kvantovaya teoriya nerelyativistskikh stolknovenii, Mir, M., 1975, 568 pp.
[8] V.N. Kapshai, Yu.A. Grishechkin, “Relyativistskaya zadacha o $s$-sostoyaniyakh rasseyaniya dlya superpozitsii dvukh potentsialov «$\delta$-sfera»”, Problemy fiziki, matematiki i tekhniki, 2015, no. 2(23), 7–12