Relativistic partial Green's functions of scattering states characterized by orbital quantum number $l=1$
Problemy fiziki, matematiki i tehniki, no. 3 (2021), pp. 7-13.

Voir la notice de l'article provenant de la source Math-Net.Ru

Green's functions of the quasipotential approach of quantum field theory are found in the relativistic configurational representation and are expressed in terms of elementary functions in case of scattering states characterized by orbital quantum number $l=1$ ($p$-states). Asymptotic properties of the Green's functions are determined at large values of the relativistic coordinate. It is shown that all the Green's functions coincide in the nonrelativistic limit with the partial Green's function of the Schrodinger equation. The equations for the corresponding partial wave functions of the scattering states are solved exactly in case of spherically symmetric potentials «$\delta$-sphere» and their superpositions. Characteristic features of the behavior of partial scattering cross sections for such potentials are determined.
Keywords: Green's functions, quasipotential approach, relativistic configurational representation, scattering states, $p$-states, delta-function potential.
@article{PFMT_2021_3_a0,
     author = {V. N. Kapshai and A. A. Grishechkina},
     title = {Relativistic partial {Green's} functions of scattering states characterized by orbital quantum number $l=1$},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {7--13},
     publisher = {mathdoc},
     number = {3},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2021_3_a0/}
}
TY  - JOUR
AU  - V. N. Kapshai
AU  - A. A. Grishechkina
TI  - Relativistic partial Green's functions of scattering states characterized by orbital quantum number $l=1$
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2021
SP  - 7
EP  - 13
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2021_3_a0/
LA  - ru
ID  - PFMT_2021_3_a0
ER  - 
%0 Journal Article
%A V. N. Kapshai
%A A. A. Grishechkina
%T Relativistic partial Green's functions of scattering states characterized by orbital quantum number $l=1$
%J Problemy fiziki, matematiki i tehniki
%D 2021
%P 7-13
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2021_3_a0/
%G ru
%F PFMT_2021_3_a0
V. N. Kapshai; A. A. Grishechkina. Relativistic partial Green's functions of scattering states characterized by orbital quantum number $l=1$. Problemy fiziki, matematiki i tehniki, no. 3 (2021), pp. 7-13. http://geodesic.mathdoc.fr/item/PFMT_2021_3_a0/

[1] V.N. Kapshai, T.A. Alferova, “One-dimensional relativistic problems on bound states and scattering for a superposition of two $\delta$ potentials”, Russian Physics Journal, 45:1 (2002), 1–9 | DOI

[2] V.N. Kapshai, S.I. Fialka, “Partial quasipotential equations in the relativistic configuration representation”, Russ. Phys. Journal, 60:10 (2018), 1696–1704 | DOI | Zbl

[3] V.N. Kapshai, T.A. Alferova, “Razlozhenie po matrichnym elementam UNP gruppy Lorentsa i integralnye uravneniya dlya relyativistskikh volnovykh funktsii”, sb. st., Kovariantnye metody v teoreticheskoi fizike, 4, In-t fiziki NAN Belarusi, Minsk, 1997, 88–95

[4] G.B. Arfken, H.J. Weber, F.E. Harris, Mathematical methods for physicists, 7th ed., Elsevier, New York, 2013, 1205 pp. | Zbl

[5] A.O. Gelfond, Vychety i ikh prilozheniya, Lenand, M., 2018, 114 pp.

[6] A.D. Wunsch, Complex variables with applications, 3rd ed., PAW, New York, 2005, 676 pp.

[7] Dzh. Teilor, Teoriya rasseyaniya: kvantovaya teoriya nerelyativistskikh stolknovenii, Mir, M., 1975, 568 pp.

[8] V.N. Kapshai, Yu.A. Grishechkin, “Relyativistskaya zadacha o $s$-sostoyaniyakh rasseyaniya dlya superpozitsii dvukh potentsialov «$\delta$-sfera»”, Problemy fiziki, matematiki i tekhniki, 2015, no. 2(23), 7–12