On sets of generators of $l$-ary group $\langle A^k, [\ ]_{l,\sigma,k}\rangle$.~I
Problemy fiziki, matematiki i tehniki, no. 2 (2021), pp. 69-76.

Voir la notice de l'article provenant de la source Math-Net.Ru

The relationship between sets of generators in group $A$ and sets of generators in polyadic group $\langle A^k, [\ ]_{l,\sigma,k}\rangle$ with $l$-ary operation $[\ ]_{l,\sigma,k}$, that is defined on Cartesian power $A^k$ of group $A$ for arbitrary integer $l\geqslant 2$ and arbitrary substitution $\sigma$ from the set $\mathbf{S}_k$ of all substitutions of the set $\{1, 2,\dots, k\}$ is described.
Mots-clés : group
Keywords: $l$-ary group, set of generators.
@article{PFMT_2021_2_a9,
     author = {A. M. Gal'mak},
     title = {On sets of generators of $l$-ary group $\langle A^k, [\ ]_{l,\sigma,k}\rangle${.~I}},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {69--76},
     publisher = {mathdoc},
     number = {2},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2021_2_a9/}
}
TY  - JOUR
AU  - A. M. Gal'mak
TI  - On sets of generators of $l$-ary group $\langle A^k, [\ ]_{l,\sigma,k}\rangle$.~I
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2021
SP  - 69
EP  - 76
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2021_2_a9/
LA  - ru
ID  - PFMT_2021_2_a9
ER  - 
%0 Journal Article
%A A. M. Gal'mak
%T On sets of generators of $l$-ary group $\langle A^k, [\ ]_{l,\sigma,k}\rangle$.~I
%J Problemy fiziki, matematiki i tehniki
%D 2021
%P 69-76
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2021_2_a9/
%G ru
%F PFMT_2021_2_a9
A. M. Gal'mak. On sets of generators of $l$-ary group $\langle A^k, [\ ]_{l,\sigma,k}\rangle$.~I. Problemy fiziki, matematiki i tehniki, no. 2 (2021), pp. 69-76. http://geodesic.mathdoc.fr/item/PFMT_2021_2_a9/

[1] E.L. Post, “Polyadic groups”, Trans. Amer. Math. Soc., 48:2 (1940), 208–350 | DOI | MR

[2] A.M. Galmak, Mnogomestnye operatsii na dekartovykh stepenyakh, Izd. tsentr BGU, Minsk, 2009, 265 pp.

[3] W. Dornte, “Untersuchungen uber einen verallgemeinerten Gruppenbegrieff”, Math. Z., 29 (1928), 1–19 | DOI | MR | Zbl

[4] S.A. Rusakov, Algebraicheskie n-arnye sistemy, Navuka i tekhnika, Mn., 1992, 245 pp.

[5] V.D. Belousov, n-Arnye kvazigruppy, Shtiintsa, Kishinev, 1972, 228 pp.

[6] J. Ušan, “n-Groups in the light of the neutral operations”, Mathematika Moravica, 2003, Special Vol., 162 pp. | MR

[7] Yu.I. Kulazhenko, Poliadicheskie operatsii i ikh prilozheniya, Izd. Tsentr BGU, Minsk, 2014, 311 pp.

[8] N.A. Schuchkin, Vvedenie v teoriyu n-grupp, Print, Volgograd, 2019, 236 pp.

[9] A.M. Galmak, Kongruentsii poliadicheskikh grupp, Belaruskaya navuka, Minsk, 1999, 182 pp.