Some solutions of the dispersion equation for a moving biisotropic medium
Problemy fiziki, matematiki i tehniki, no. 2 (2021), pp. 35-38.

Voir la notice de l'article provenant de la source Math-Net.Ru

The dispersion equation is obtained for plane monochromatic electromagnetic waves propagating in a biisotropic medium moving at a constant speed. Exact solutions of the dispersion equation are found in the case of wave propagation along or opposite to the medium motion direction.
Keywords: moving biisotropic medium, material equations, Maxwell equations, refractive index
Mots-clés : dispersion equation.
@article{PFMT_2021_2_a3,
     author = {Yu. A. Grishechkin and V. N. Kapshai},
     title = {Some solutions of the dispersion equation for a moving biisotropic medium},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {35--38},
     publisher = {mathdoc},
     number = {2},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2021_2_a3/}
}
TY  - JOUR
AU  - Yu. A. Grishechkin
AU  - V. N. Kapshai
TI  - Some solutions of the dispersion equation for a moving biisotropic medium
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2021
SP  - 35
EP  - 38
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2021_2_a3/
LA  - ru
ID  - PFMT_2021_2_a3
ER  - 
%0 Journal Article
%A Yu. A. Grishechkin
%A V. N. Kapshai
%T Some solutions of the dispersion equation for a moving biisotropic medium
%J Problemy fiziki, matematiki i tehniki
%D 2021
%P 35-38
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2021_2_a3/
%G ru
%F PFMT_2021_2_a3
Yu. A. Grishechkin; V. N. Kapshai. Some solutions of the dispersion equation for a moving biisotropic medium. Problemy fiziki, matematiki i tehniki, no. 2 (2021), pp. 35-38. http://geodesic.mathdoc.fr/item/PFMT_2021_2_a3/

[1] Y.T. Aladadi, M.A.S. Alkanhal, “Classification and characterization of electromagnetic materials”, Scientific Reports, 10:11406 (2020), 1–11

[2] M. Tanisli, M.E. Kansu, “Octonionic Maxwell's equations for bi-isotropic media”, Journal of Mathematical Physics, 52:5 (2011), 053511 | DOI | MR | Zbl

[3] O.V. Ivanov, Rasprostranenie elektromagnitnykh voln v anizotropnykh i bianizotropnykh sloistykh strukturakh, UlGTU, Ulyanovsk, 2010, 262 pp.

[4] I.V. Lindell et. al., Electromagnetic waves in chiral and biisotropic media, Artech House, Boston–London, 1994, 500 pp.

[5] L.D. Landau, E.M. Lifshits, Teoreticheskaya fizika, v 10 t., v. 8, Elektrodinamika sploshnykh sred, 4-e izd., Fizmatlit, M., 2005, 656 pp.

[6] A.N. Godlevskaya, V.N. Kapshai, “Volnovye funktsii fotona v estestvenno girotropnoi srede”, Optika i spektroskopiya, 66:4 (1989), 830–834

[7] V.N. Kapshai, V.V. Kondratyuk, “Rasseyanie elektromagnitnykh voln na biizotropnom share v biizotropnoi srede”, Problemy fiziki, matematiki i tekhniki, 2010, no. 3(4), 7–21 | MR

[8] B.M. Bolotovskii, S.N. Stolyarov, “Sovremennoe sostoyanie elektrodinamiki dvizhuschikhsya sred (Bezgranichnye sredy)”, UFN, 114:4 (1974), 569–608