The structure of the plane waves for spin $2$ field, massive and massless cases
Problemy fiziki, matematiki i tehniki, no. 2 (2021), pp. 23-34.

Voir la notice de l'article provenant de la source Math-Net.Ru

A general theory for a field with spin based on the $30$-component system of first-order Fedorov – Regge equations is presented. As a result of the elimination of the additional vector and the third-rank tensor in these equations, the Pauli – Fierz second-order equations for the scalar and symmetric tensor are derived. Transition to the massless limit is analyzed in detail; the gauge symmetry available according to the Pauli – Fierz analysis is investigated. There are explicitly constructed solutions in the form of plane waves for a massive particle, which correspond to five linearly independent states. In the case of a massless field, 6 independent solutions are found, and it is shown that four of them are gauge ones and, therefore, can be excluded as nonphysical. Two independent solutions that do not contain gauge degrees of freedom are found explicitly.
Keywords: spin $2$ field, second order equation by Pauli – Fierz, first order equation by Fedorov – Regge, plane waves, linearly independent solutions, massless particle, exclusion of the gauge degrees of freedom.
@article{PFMT_2021_2_a2,
     author = {A. V. Buryy and A. V. Ivashkevich and E. M. Ovsiyuk and V. M. Red'kov},
     title = {The structure of the plane waves for spin $2$ field, massive and massless cases},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {23--34},
     publisher = {mathdoc},
     number = {2},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2021_2_a2/}
}
TY  - JOUR
AU  - A. V. Buryy
AU  - A. V. Ivashkevich
AU  - E. M. Ovsiyuk
AU  - V. M. Red'kov
TI  - The structure of the plane waves for spin $2$ field, massive and massless cases
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2021
SP  - 23
EP  - 34
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2021_2_a2/
LA  - ru
ID  - PFMT_2021_2_a2
ER  - 
%0 Journal Article
%A A. V. Buryy
%A A. V. Ivashkevich
%A E. M. Ovsiyuk
%A V. M. Red'kov
%T The structure of the plane waves for spin $2$ field, massive and massless cases
%J Problemy fiziki, matematiki i tehniki
%D 2021
%P 23-34
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2021_2_a2/
%G ru
%F PFMT_2021_2_a2
A. V. Buryy; A. V. Ivashkevich; E. M. Ovsiyuk; V. M. Red'kov. The structure of the plane waves for spin $2$ field, massive and massless cases. Problemy fiziki, matematiki i tehniki, no. 2 (2021), pp. 23-34. http://geodesic.mathdoc.fr/item/PFMT_2021_2_a2/

[1] W. Pauli, M. Fierz, “Über relativistische Feldleichungen von Teilchen mit beliebigem Spin im elektromagnetishen Feld”, Helv. Phys. Acta, 12 (1939), 297–300 | Zbl

[2] M. Fierz, W. Pauli, “On relativistic wave equations for particles of arbitrary spin in an electromagnetic field”, Proc. Roy. Soc. London A, 173 (1939), 211–232 | DOI | MR

[3] L. De Broglie, “Sur l'interprétation de certaines équations dans la théorie des particules de spin 2”, C. R. Acad. Sci. Paris, 212 (1941), 657–659

[4] I.M. Gelfand, A.M. Yaglom, “Obschie relyativistski invariantnye uravneniya i beskonechnomernye predstavleniya gruppy Lorentsa”, ZhETF, 18:8 (1948), 703–733 | MR

[5] E.E. Fradkin, “K teorii chastits s vysshimi spinami”, ZhETF, 20:1 (1950), 27–38

[6] F.I. Fedorov, “K teorii chastitsy so spinom 2”, Uch. zap. BGU. Ser. fiz.-mat., 1951, no. 12, 156–173

[7] B.V. Krylov, F.I Fedorov, “Uravneniya pervogo poryadka dlya gravitona”, DAN BSSR, 11:8 (1967), 681–684

[8] A.A. Bogush, B.V. Krylov, F.I. Fedorov, “O matritsakh uravnenii dlya chastits so spinom 2”, Vestsi AN BSSR. Ser. fiz.-mat. navuk, 1968, no. 1, 74–81

[9] F.I. Fedorov, “Uravneniya pervogo poryadka dlya gravitatsionnogo polya”, Dokl. AN SSSR, 179:4 (1968), 802–805

[10] B.V. Krylov, “O sistemakh uravnenii pervogo poryadka dlya gravitona”, Vestsi AN BSSR. Ser. fiz.-mat. navuk, 1972, no. 6, 82–89

[11] F.I. Fedorov, A.A. Kirilov, “Uravneniya pervogo poryadka dlya gravitatsionnogo polya v vakuume”, Acta Physica Polonica B, 7:3 (1976), 161–167 | MR | Zbl

[12] V.V. Kisel, “O relyativistskikh volnovykh uravneniyakh dlya massivnoi chastitsy so spinom 2”, Vestsi AN BSSR. Cer. fiz.-mat. navuk, 1986, no. 5, 94–99

[13] V.Ya. Fainberg, “K teorii vzaimodeistviya chastits s vysshimi spinami s elektro-magnitnym i mezonnym polyami”, Tr. FIAN SSSR, 6 (1955), 269–332

[14] T. Regge, “On properties of the particle with spin 2”, Nuovo Cimento, 5:2 (1957), 325–326 | DOI | MR

[15] H.A. Buchdahl, “On the compatibility of relativistic wave equations for particles of higher spin in the presence of a gravitational field”, Nuovo Cim., 10 (1958), 96–103 | DOI | MR | Zbl

[16] H.A. Buchdahl, “On the compatibility of relativistic wave equations in Riemann spaces”, Nuovo Cim., 25 (1962), 486–496 | DOI | MR | Zbl

[17] K. Johnson, E.C.G. Sudarshan, “Inconsistency of the local field theory of charged spin 3/2 particles”, Ann. Phys. N.Y., 13:1 (1961), 121–145 | DOI | MR

[18] K. Johnson, E.C.G. Sudarshan, “The impossibility of a consistent theory of a charged higher spin Fermi fields”, Ann. Phys., 13:1 (1961), 126–145 | DOI | MR | Zbl

[19] G. Velo, D. Zwanziger, “Noncausality and other defects of interaction Lagrangians for particles with spin one and higher”, Phys. Rev., 188:5 (1969), 2218–2222 | DOI

[20] W. Cox, “First-order formulation of massive spin-2 field theories”, J. Phys. A, 15 (1982), 253–268 | DOI | MR

[21] R.K. Loide, “On conformally covariant spin3/2 and spin-2 equations”, J. Phys. A, 19:5 (1986), 827–829 | DOI | MR

[22] A.A. Bogush i dr., “Ob uravneniyakh dlya chastitsy so spinom 2 vo vneshnikh elektromagnitnykh i gravitatsionnykh polyakh”, Vestsi NANB. Ser. fiz.-mat. navuk, 2003, no. 1, 62–67

[23] V.M. Red'kov, N.G. Tokarevskaya, V.V. Kisel, “Graviton in a curved spacetime background and gauge symmetry”, Nonlinear Phenomena in Complex Systems, 6:3 (2003), 772–778

[24] V.V. Kisel i dr., “Analiz vklada kalibrovochnykh stepenei svobody v strukturu tenzora energii-impulsa bezmassovogo polya so spinom 2”, Vestsi NAN Belarusi. Ser. fiz.-mat. navuk, 2015, no. 2, 58–63

[25] V.V. Kisel i dr., “Nerelyativistskii predel v teorii chastitsy so spinom 2”, Doklady NAN Belarusi, 59:3 (2015), 21–27