Quasi-reversibility of Jackson's networks with exponential constraint on the sojourn time of claims
Problemy fiziki, matematiki i tehniki, no. 1 (2021), pp. 62-64.

Voir la notice de l'article provenant de la source Math-Net.Ru

Outbound flows are investigated using the reveresе time procedure for an exponential queuing network containing knots of two types – single-line and multi-line. The sojourn time at the knots of network is limited by an exponential random variable for a fixed number of claims in the knot. The quasi-reversibility of the Markov network process is established.
Keywords: queuing network, single-line and multi-line knots, limited sojourn time, reverse time, quasi-reversibility.
@article{PFMT_2021_1_a9,
     author = {Yu. V. Malinkovskii and V. A. Niamilastsivaya},
     title = {Quasi-reversibility of {Jackson's} networks with exponential constraint on the sojourn time of claims},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {62--64},
     publisher = {mathdoc},
     number = {1},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2021_1_a9/}
}
TY  - JOUR
AU  - Yu. V. Malinkovskii
AU  - V. A. Niamilastsivaya
TI  - Quasi-reversibility of Jackson's networks with exponential constraint on the sojourn time of claims
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2021
SP  - 62
EP  - 64
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2021_1_a9/
LA  - ru
ID  - PFMT_2021_1_a9
ER  - 
%0 Journal Article
%A Yu. V. Malinkovskii
%A V. A. Niamilastsivaya
%T Quasi-reversibility of Jackson's networks with exponential constraint on the sojourn time of claims
%J Problemy fiziki, matematiki i tehniki
%D 2021
%P 62-64
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2021_1_a9/
%G ru
%F PFMT_2021_1_a9
Yu. V. Malinkovskii; V. A. Niamilastsivaya. Quasi-reversibility of Jackson's networks with exponential constraint on the sojourn time of claims. Problemy fiziki, matematiki i tehniki, no. 1 (2021), pp. 62-64. http://geodesic.mathdoc.fr/item/PFMT_2021_1_a9/

[1] B.V. Gnedenko, I.N. Kovalenko, Vvedenie v teoriyu massovogo obsluzhivaniya, Nauka, M., 1987, 431 pp.

[2] E.A. Kovalev, “Seti massovogo obsluzhivaniya s ogranichennym vremenem ozhidaniya v ocheredyakh”, AVT, 1985, no. 2, 50–55

[3] O.V. Yakubovich, “Statsionarnoe raspredelenie seti massovogo obsluzhivaniya s razlichnymi tipami signalov i polozhitelnykh zayavok i ogranicheniem na vremya prebyvaniya”, Izvestiya Gomelskogo gosudarstvennogo universiteta imeni F. Skoriny, 2008, no. 5(50)-2, 207–211

[4] O.V. Yakubovich, V.E. Evdokimovich, “Set massovogo obsluzhivaniya so sluchainym vremenem prebyvaniya polozhitelnykh, otritsatelnykh zayavok i signalov”, Problemy fiziki, matematiki i tekhniki, 2010, no. 4(5), 63–67

[5] Yu.E. Letunovich, “Neodnorodnye seti s ogranicheniem na vremya prebyvaniya v rezhimakh obsluzhivaniya”, AVT, 2010, no. 5, 33–41 | MR

[6] O.V. Yakubovich, Yu.E. Dudovskaya, “Mnogorezhimnaya set massovogo obsluzhivaniya so sluchainym vremenem prebyvaniya razlichnykh tipov otritsatelnykh zayavok”, Problemy fiziki, matematiki i tekhniki, 2012, no. 4 (137), 74–77

[7] Yu.V. Malinkovskii, “Seti Dzheksona s odnolineinymi uzlami i ogranichennym vremenem prebyvaniya ili ozhidaniya”, AVT, 2015, no. 4, 67–78

[8] Yu.V. Malinkovskii, “Statsionarnoe raspredelenie veroyatnostei sostoyanii G-setei s ogranichennym vremenem prebyvaniya”, AVT, 2017, no. 10, 155–167

[9] Yu.V. Malinkovskii, V.A. Nemilostivaya, “Statsionarnoe raspredelenie setei Dzheksona s eksponentsialnym ogranicheniem na vremenya prebyvaniya zayavok”, Problemy fiziki, matematiki i tekhniki, 2020, no. 3 (44), 73–77

[10] F.P. Kelly, Reversibility and Stochastic Networks, Wiley, N.Y., 1979, 230 pp. | MR | Zbl