Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PFMT_2021_1_a9, author = {Yu. V. Malinkovskii and V. A. Niamilastsivaya}, title = {Quasi-reversibility of {Jackson's} networks with exponential constraint on the sojourn time of claims}, journal = {Problemy fiziki, matematiki i tehniki}, pages = {62--64}, publisher = {mathdoc}, number = {1}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/PFMT_2021_1_a9/} }
TY - JOUR AU - Yu. V. Malinkovskii AU - V. A. Niamilastsivaya TI - Quasi-reversibility of Jackson's networks with exponential constraint on the sojourn time of claims JO - Problemy fiziki, matematiki i tehniki PY - 2021 SP - 62 EP - 64 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PFMT_2021_1_a9/ LA - ru ID - PFMT_2021_1_a9 ER -
%0 Journal Article %A Yu. V. Malinkovskii %A V. A. Niamilastsivaya %T Quasi-reversibility of Jackson's networks with exponential constraint on the sojourn time of claims %J Problemy fiziki, matematiki i tehniki %D 2021 %P 62-64 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/PFMT_2021_1_a9/ %G ru %F PFMT_2021_1_a9
Yu. V. Malinkovskii; V. A. Niamilastsivaya. Quasi-reversibility of Jackson's networks with exponential constraint on the sojourn time of claims. Problemy fiziki, matematiki i tehniki, no. 1 (2021), pp. 62-64. http://geodesic.mathdoc.fr/item/PFMT_2021_1_a9/
[1] B.V. Gnedenko, I.N. Kovalenko, Vvedenie v teoriyu massovogo obsluzhivaniya, Nauka, M., 1987, 431 pp.
[2] E.A. Kovalev, “Seti massovogo obsluzhivaniya s ogranichennym vremenem ozhidaniya v ocheredyakh”, AVT, 1985, no. 2, 50–55
[3] O.V. Yakubovich, “Statsionarnoe raspredelenie seti massovogo obsluzhivaniya s razlichnymi tipami signalov i polozhitelnykh zayavok i ogranicheniem na vremya prebyvaniya”, Izvestiya Gomelskogo gosudarstvennogo universiteta imeni F. Skoriny, 2008, no. 5(50)-2, 207–211
[4] O.V. Yakubovich, V.E. Evdokimovich, “Set massovogo obsluzhivaniya so sluchainym vremenem prebyvaniya polozhitelnykh, otritsatelnykh zayavok i signalov”, Problemy fiziki, matematiki i tekhniki, 2010, no. 4(5), 63–67
[5] Yu.E. Letunovich, “Neodnorodnye seti s ogranicheniem na vremya prebyvaniya v rezhimakh obsluzhivaniya”, AVT, 2010, no. 5, 33–41 | MR
[6] O.V. Yakubovich, Yu.E. Dudovskaya, “Mnogorezhimnaya set massovogo obsluzhivaniya so sluchainym vremenem prebyvaniya razlichnykh tipov otritsatelnykh zayavok”, Problemy fiziki, matematiki i tekhniki, 2012, no. 4 (137), 74–77
[7] Yu.V. Malinkovskii, “Seti Dzheksona s odnolineinymi uzlami i ogranichennym vremenem prebyvaniya ili ozhidaniya”, AVT, 2015, no. 4, 67–78
[8] Yu.V. Malinkovskii, “Statsionarnoe raspredelenie veroyatnostei sostoyanii G-setei s ogranichennym vremenem prebyvaniya”, AVT, 2017, no. 10, 155–167
[9] Yu.V. Malinkovskii, V.A. Nemilostivaya, “Statsionarnoe raspredelenie setei Dzheksona s eksponentsialnym ogranicheniem na vremenya prebyvaniya zayavok”, Problemy fiziki, matematiki i tekhniki, 2020, no. 3 (44), 73–77
[10] F.P. Kelly, Reversibility and Stochastic Networks, Wiley, N.Y., 1979, 230 pp. | MR | Zbl