One property of hereditary saturated formations
Problemy fiziki, matematiki i tehniki, no. 1 (2021), pp. 50-53

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\mathfrak{F}$ be a hereditary saturated formation. It is proved that if for every Sylow subgroup $P$ of a finite group $G$ and every maximal subgroup $V$ of $P$ there is a $\mathfrak{F}$-subgroup $T$ such that $VT=G$, then $G\in\mathfrak{F}$. Problems 19.87 and 19.88 from the “Kourovka Notebook” are solved in the article.
Keywords: finite group, Sylow subgroup, supplement, generally subnormal subgroup, lattice formation.
Mots-clés : formation
@article{PFMT_2021_1_a7,
     author = {X. Yi and S. F. Kamornikov and V. N. Tyutyanov},
     title = {One property of hereditary saturated formations},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {50--53},
     publisher = {mathdoc},
     number = {1},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2021_1_a7/}
}
TY  - JOUR
AU  - X. Yi
AU  - S. F. Kamornikov
AU  - V. N. Tyutyanov
TI  - One property of hereditary saturated formations
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2021
SP  - 50
EP  - 53
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2021_1_a7/
LA  - ru
ID  - PFMT_2021_1_a7
ER  - 
%0 Journal Article
%A X. Yi
%A S. F. Kamornikov
%A V. N. Tyutyanov
%T One property of hereditary saturated formations
%J Problemy fiziki, matematiki i tehniki
%D 2021
%P 50-53
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2021_1_a7/
%G ru
%F PFMT_2021_1_a7
X. Yi; S. F. Kamornikov; V. N. Tyutyanov. One property of hereditary saturated formations. Problemy fiziki, matematiki i tehniki, no. 1 (2021), pp. 50-53. http://geodesic.mathdoc.fr/item/PFMT_2021_1_a7/