On sets of generators of $l$-ary semigroup $\langle A^k,[\,\,]_{l,\sigma,k}\rangle$
Problemy fiziki, matematiki i tehniki, no. 1 (2021), pp. 44-49.

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of finding, from a known generating set of the semigroup $A$, the generating set of the $l$-ary semigroup $\langle A^k,[\,\,]_{l,\sigma,k}\rangle$ with the $l$-ary operation $[\,\,]_{l,\sigma,k}$, which is defined on the $k$-th Cartesian power of an arbitrary groupoid $A$ for any integer $l\ge2$ and any permutation $\sigma$ from the set $\mathbf{S}_k$ of all permutations of the set $\{1, 2,\dots,k\}$ has been solved.
Keywords: semigroup, $l$-ary semigroup, set of generators.
@article{PFMT_2021_1_a6,
     author = {A. M. Gal'mak},
     title = {On sets of generators of $l$-ary semigroup $\langle A^k,[\,\,]_{l,\sigma,k}\rangle$},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {44--49},
     publisher = {mathdoc},
     number = {1},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2021_1_a6/}
}
TY  - JOUR
AU  - A. M. Gal'mak
TI  - On sets of generators of $l$-ary semigroup $\langle A^k,[\,\,]_{l,\sigma,k}\rangle$
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2021
SP  - 44
EP  - 49
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2021_1_a6/
LA  - ru
ID  - PFMT_2021_1_a6
ER  - 
%0 Journal Article
%A A. M. Gal'mak
%T On sets of generators of $l$-ary semigroup $\langle A^k,[\,\,]_{l,\sigma,k}\rangle$
%J Problemy fiziki, matematiki i tehniki
%D 2021
%P 44-49
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2021_1_a6/
%G ru
%F PFMT_2021_1_a6
A. M. Gal'mak. On sets of generators of $l$-ary semigroup $\langle A^k,[\,\,]_{l,\sigma,k}\rangle$. Problemy fiziki, matematiki i tehniki, no. 1 (2021), pp. 44-49. http://geodesic.mathdoc.fr/item/PFMT_2021_1_a6/

[1] A.M. Galmak, “Ob operatsii $[\,\,]_{l,\sigma,k}$”, Vesnik MDU imya A. A. Kulyashova, 2010, no. 1(35), 34–38

[2] A.M. Galmak, Mnogomestnye operatsii na dekartovykh stepenyakh, Izd. tsentr BGU, Minsk, 2009, 265 pp.

[3] A.M. Galmak, “Mnogomestnye assotsiativnye operatsii na dekartovykh stepenyakh”, Vestsi NAN Belarusi, 2008, no. 3, 28–34 | MR

[4] E.L. Post, “Polyadic groups”, Trans. Amer. Math. Soc., 48:2 (1940), 208–350 | DOI | MR

[5] E.S. Lyapin, Polugruppy, Fizmatgiz, M., 1960, 592 pp.

[6] G.S.M. Kokseter, U.O.Dzh. Mozer, Porozhdayuschie elementy i opredelyayuschie sootnosheniya diskretnykh grupp, Nauka, M., 1980, 240 pp.