Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PFMT_2021_1_a1, author = {S. S. Girgel}, title = {Solutions of the wave equation in parabolic rotary coordinates. {III.} {Spatiotemporal} wave packets of {Kummer--Kummer} and {Tricomi--Kummer} with the continuous angular index}, journal = {Problemy fiziki, matematiki i tehniki}, pages = {13--18}, publisher = {mathdoc}, number = {1}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/PFMT_2021_1_a1/} }
TY - JOUR AU - S. S. Girgel TI - Solutions of the wave equation in parabolic rotary coordinates. III. Spatiotemporal wave packets of Kummer--Kummer and Tricomi--Kummer with the continuous angular index JO - Problemy fiziki, matematiki i tehniki PY - 2021 SP - 13 EP - 18 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PFMT_2021_1_a1/ LA - ru ID - PFMT_2021_1_a1 ER -
%0 Journal Article %A S. S. Girgel %T Solutions of the wave equation in parabolic rotary coordinates. III. Spatiotemporal wave packets of Kummer--Kummer and Tricomi--Kummer with the continuous angular index %J Problemy fiziki, matematiki i tehniki %D 2021 %P 13-18 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/PFMT_2021_1_a1/ %G ru %F PFMT_2021_1_a1
S. S. Girgel. Solutions of the wave equation in parabolic rotary coordinates. III. Spatiotemporal wave packets of Kummer--Kummer and Tricomi--Kummer with the continuous angular index. Problemy fiziki, matematiki i tehniki, no. 1 (2021), pp. 13-18. http://geodesic.mathdoc.fr/item/PFMT_2021_1_a1/
[1] S.S. Girgel, “Resheniya volnovogo uravneniya v parabolicheskikh vraschatelnykh koordinatakh. I. 3D svetovye puchki Kummera–Kummera s nepreryvnym uglovym indeksom”, Problemy fiziki, matematiki i tekhniki, 2020, no. 3 (44), 13–17
[2] S.S. Girgel, “Resheniya volnovogo uravneniya v parablicheskikh vraschatelnykh koordinatakh. II. 3D svetovye puchki Trikomi–Kummera i drugie puchki s nepreryvnym uglovym indeksom”, Problemy fiziki, matematiki i tekhniki, 2020, no. 4(45), 20–24
[3] H. Bateman, “The conformal transformations of a space of four dimensions and their applications to geometrical optics”, Proc. London Math. Soc., 2 (1909), 70–89 | DOI | MR
[4] H. Bateman, “The transformations of the electrodynamical equations”, Proc. London Math. Soc., 8 (1910), 223–264 | DOI | MR | Zbl
[5] G. Beitmen, Matematicheskaya teoriya rasprostraneniya elektromagnitnykh voln, GIFML, M., 1958, 180 pp.
[6] I.M. Besieris, A.M. Shaarawi, A.M. Attiya, “Bateman conformal transformations within the framework of the bidirectional spectral representation”, Progress In Electromagnetics Research, PIER, 48 (2004), 201–231 | DOI
[7] I.M. Besieris, A.M. Shaarawi, “Spatiotemporall localized null electromagnetic waves I. Luminal”, Progress In Electromagnetics Research B, 8 (2008), 1–28 | DOI
[8] A.V. Utkin, “Mathieu Progressive Waves”, Commun. Theor. Phys., 56 (2011), 733–739 | DOI | Zbl
[9] B.B. Borisov, “Proizvodyaschie funktsii sfokusirovannykh volnovykh mod tipa Besselya–Gaussa”, Zapiski seminarov POMI, 285, 2002, 53–57 | Zbl
[10] P. Hillion, “The Courant-Hilbert solutions of the wave equation”, J. Math. Phys., 33:8 (1992), 2749–2753 | DOI | MR | Zbl
[11] P. Yillion, “The Bateman solutions of the spinor wave equation”, Modern Physics Letters A, 8:22 (1993), 2111–2115 | DOI | MR
[12] Z. Flyugge, Zadachi po kvantovoi mekhanike, v. 2, Mir, M., 1974, 418 pp.
[13] A.A. Kovalev, V.V. Kotlyar, “Lazernye puchki Khankelya–Besselya”, Kompyuternaya optika, 35:3 (2011), 297–304 | Zbl
[14] A.A. Izmestev, “Odnoparametricheskie volnovye puchki v svobodnom prostranstve”, Izvestiya VUZov. Radiofizika, XIII:9 (1970), 1380–1388
[15] D. Deng et al., “Three-dimensional nonparaxial beams in parabolic rotational coordinates”, Optics Letters, 38:19 (2013), 3934–3936 | DOI
[16] M. Abramovits, I. Stigan (red.), Spravochnik po spetsialnym funktsiyam, per. s angl., Nauka, M., 1979, 832 pp.