Solutions of the wave equation in parabolic rotary coordinates. III. Spatiotemporal wave packets of Kummer--Kummer and Tricomi--Kummer with the continuous angular index
Problemy fiziki, matematiki i tehniki, no. 1 (2021), pp. 13-18.

Voir la notice de l'article provenant de la source Math-Net.Ru

Analytical expressions in the closed form for spatiotemporal wave packets of Kummer–Kummer and Tricomi–Kummer with continuous angular index $m$ in parabolic rotary coordinates are offered and analyzed. Physical restrictions on possible values of free parameters of such modes that they transfer finite power are formulated.
Keywords: spatiotemporal wave packets, parabolic rotary coordinates, modes Kummer–Kummer
Mots-clés : modes Tricomi–Kummer.
@article{PFMT_2021_1_a1,
     author = {S. S. Girgel},
     title = {Solutions of the wave equation in parabolic rotary coordinates. {III.} {Spatiotemporal} wave packets of {Kummer--Kummer} and {Tricomi--Kummer} with the continuous angular index},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {13--18},
     publisher = {mathdoc},
     number = {1},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2021_1_a1/}
}
TY  - JOUR
AU  - S. S. Girgel
TI  - Solutions of the wave equation in parabolic rotary coordinates. III. Spatiotemporal wave packets of Kummer--Kummer and Tricomi--Kummer with the continuous angular index
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2021
SP  - 13
EP  - 18
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2021_1_a1/
LA  - ru
ID  - PFMT_2021_1_a1
ER  - 
%0 Journal Article
%A S. S. Girgel
%T Solutions of the wave equation in parabolic rotary coordinates. III. Spatiotemporal wave packets of Kummer--Kummer and Tricomi--Kummer with the continuous angular index
%J Problemy fiziki, matematiki i tehniki
%D 2021
%P 13-18
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2021_1_a1/
%G ru
%F PFMT_2021_1_a1
S. S. Girgel. Solutions of the wave equation in parabolic rotary coordinates. III. Spatiotemporal wave packets of Kummer--Kummer and Tricomi--Kummer with the continuous angular index. Problemy fiziki, matematiki i tehniki, no. 1 (2021), pp. 13-18. http://geodesic.mathdoc.fr/item/PFMT_2021_1_a1/

[1] S.S. Girgel, “Resheniya volnovogo uravneniya v parabolicheskikh vraschatelnykh koordinatakh. I. 3D svetovye puchki Kummera–Kummera s nepreryvnym uglovym indeksom”, Problemy fiziki, matematiki i tekhniki, 2020, no. 3 (44), 13–17

[2] S.S. Girgel, “Resheniya volnovogo uravneniya v parablicheskikh vraschatelnykh koordinatakh. II. 3D svetovye puchki Trikomi–Kummera i drugie puchki s nepreryvnym uglovym indeksom”, Problemy fiziki, matematiki i tekhniki, 2020, no. 4(45), 20–24

[3] H. Bateman, “The conformal transformations of a space of four dimensions and their applications to geometrical optics”, Proc. London Math. Soc., 2 (1909), 70–89 | DOI | MR

[4] H. Bateman, “The transformations of the electrodynamical equations”, Proc. London Math. Soc., 8 (1910), 223–264 | DOI | MR | Zbl

[5] G. Beitmen, Matematicheskaya teoriya rasprostraneniya elektromagnitnykh voln, GIFML, M., 1958, 180 pp.

[6] I.M. Besieris, A.M. Shaarawi, A.M. Attiya, “Bateman conformal transformations within the framework of the bidirectional spectral representation”, Progress In Electromagnetics Research, PIER, 48 (2004), 201–231 | DOI

[7] I.M. Besieris, A.M. Shaarawi, “Spatiotemporall localized null electromagnetic waves I. Luminal”, Progress In Electromagnetics Research B, 8 (2008), 1–28 | DOI

[8] A.V. Utkin, “Mathieu Progressive Waves”, Commun. Theor. Phys., 56 (2011), 733–739 | DOI | Zbl

[9] B.B. Borisov, “Proizvodyaschie funktsii sfokusirovannykh volnovykh mod tipa Besselya–Gaussa”, Zapiski seminarov POMI, 285, 2002, 53–57 | Zbl

[10] P. Hillion, “The Courant-Hilbert solutions of the wave equation”, J. Math. Phys., 33:8 (1992), 2749–2753 | DOI | MR | Zbl

[11] P. Yillion, “The Bateman solutions of the spinor wave equation”, Modern Physics Letters A, 8:22 (1993), 2111–2115 | DOI | MR

[12] Z. Flyugge, Zadachi po kvantovoi mekhanike, v. 2, Mir, M., 1974, 418 pp.

[13] A.A. Kovalev, V.V. Kotlyar, “Lazernye puchki Khankelya–Besselya”, Kompyuternaya optika, 35:3 (2011), 297–304 | Zbl

[14] A.A. Izmestev, “Odnoparametricheskie volnovye puchki v svobodnom prostranstve”, Izvestiya VUZov. Radiofizika, XIII:9 (1970), 1380–1388

[15] D. Deng et al., “Three-dimensional nonparaxial beams in parabolic rotational coordinates”, Optics Letters, 38:19 (2013), 3934–3936 | DOI

[16] M. Abramovits, I. Stigan (red.), Spravochnik po spetsialnym funktsiyam, per. s angl., Nauka, M., 1979, 832 pp.