On the non-standart form of the reduced Ishikawa--Chung--Lu equations of state
Problemy fiziki, matematiki i tehniki, no. 4 (2020), pp. 68-70.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the framework of the thermodynamic approach to the study of macrosystems the two-parameter semi-empiric Ishikawa–Chung–Lu equation of state is considered. Using the Cardano method for the reduced form of equation of state $\tilde{P}=\tilde{P}(\tilde{V}, \tilde{T})$ the explicit form of its representations of the form $\tilde{V}=\tilde{V}(\tilde{P}, \tilde{T})$ is found.
Keywords: Ishikawa–Chung–Lu equation of state, cubicity by volume, Cardano method, reduced variables, representation of the form $\tilde{V}=\tilde{V}(\tilde{P}, \tilde{T})$.
@article{PFMT_2020_4_a10,
     author = {G. Yu. Tyumenkov},
     title = {On the non-standart form of the reduced {Ishikawa--Chung--Lu} equations of state},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {68--70},
     publisher = {mathdoc},
     number = {4},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2020_4_a10/}
}
TY  - JOUR
AU  - G. Yu. Tyumenkov
TI  - On the non-standart form of the reduced Ishikawa--Chung--Lu equations of state
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2020
SP  - 68
EP  - 70
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2020_4_a10/
LA  - ru
ID  - PFMT_2020_4_a10
ER  - 
%0 Journal Article
%A G. Yu. Tyumenkov
%T On the non-standart form of the reduced Ishikawa--Chung--Lu equations of state
%J Problemy fiziki, matematiki i tehniki
%D 2020
%P 68-70
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2020_4_a10/
%G ru
%F PFMT_2020_4_a10
G. Yu. Tyumenkov. On the non-standart form of the reduced Ishikawa--Chung--Lu equations of state. Problemy fiziki, matematiki i tehniki, no. 4 (2020), pp. 68-70. http://geodesic.mathdoc.fr/item/PFMT_2020_4_a10/

[1] F. Salces-Carcoba, C.J. Billington, A. Putra, Y. Yue, S. Sugawa, I.B. Spielman, “Equations of state from individual one-dimentional Bose gases”, New Journal of Physics, 20 (2018), 113032–113044 | DOI

[2] J. Tian, H. Jiang, A. Mulero, “New equations of state for the hard polyhedron fluids”, Phys. Chem. Chem. Phys., 24 (2019), 13109–13115 | DOI

[3] Yu.B. Rumer, M.Sh. Ryvkin, Termodinamika, statisticheskaya fizika i kinetika, Izdatelstvo Novosibirskogo universiteta, Novosibirsk, 2000, 608 pp.

[4] T. Ishikawa, W.K. Chung, B.C.Y. Lu, “A Cubic Perturbed, Hard Sphere Equation of State for Thermodynamic Properties and Vapor-Liquid Equilibrium Calculations”, AIChE Journal, 26 (1980), 372–378 | DOI

[5] T. Ishikawa, W.K. Chung, B.C.Y. Lu, “Simple and generalized Equation of State for Vapor-Liquid Equilibrium Calculations”, Advances in Cryogenic Engineering, 25 (1980), 671–681 | DOI

[6] E.A. Dei, G.Yu. Tyumenkov, “Svoistva neidealnogo gaza v modeli Isikavy–Changa–Lu”, Problemy fiziki, matematiki i tekhniki, 2017, no. 4(33), 11–16

[7] A.A. Gusak, G.M. Gusak, E.A. Brichikova, Spravochnik po vysshei matematike v dvukh tomakh, Tetrasistems, Minsk, 1999, 640 pp.

[8] A.S. Nevmerzhitskaya, G.Yu. Tyumenkov, “O privedennykh poluempiricheskikh uravneniyakh sostoyaniya vida $\tilde{V}=\tilde{V}(\tilde{P}, \tilde{V})$”, Problemy fiziki, matematiki i tekhniki, 2019, no. 4(41), 28–30