$\mathfrak{H}_p\mathfrak{H}_q$-convex functions and generalization of the H\"older, Minkowski, and Muirhead inequalities
Problemy fiziki, matematiki i tehniki, no. 3 (2020), pp. 61-66.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\mathfrak{M}$, $\mathfrak{N}$ be any means. Let $\mathfrak{H}_p$ be a power mean with exponent $p$. A function $f$ is called $\mathfrak{MN}$-convex if for any $x$ and $y$ from the domain of $f$ the inequality$f(\mathfrak{M}(x,y))\leqslant\mathfrak{N}(f(x),f(y))$ holds. In this paper the method of constructing $\mathfrak{H}_p\mathfrak{H}_q$-convex functions is proposed. For such functions generalizations of Cauchy–Schwarz, Hölder, Minkowski, Mahler, and Muirhead inequalities are obtained.
Keywords: $\mathfrak{MN}$-convex function, Cauchy–Schwarz inequality, Hölder inequality, Minkowski inequality, Mahler inequality, Muirhead inequality, Hölder mean.
@article{PFMT_2020_3_a9,
     author = {S. M. Gorsky and V. I. Murashka},
     title = {$\mathfrak{H}_p\mathfrak{H}_q$-convex functions and generalization of the {H\"older,} {Minkowski,} and {Muirhead} inequalities},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {61--66},
     publisher = {mathdoc},
     number = {3},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2020_3_a9/}
}
TY  - JOUR
AU  - S. M. Gorsky
AU  - V. I. Murashka
TI  - $\mathfrak{H}_p\mathfrak{H}_q$-convex functions and generalization of the H\"older, Minkowski, and Muirhead inequalities
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2020
SP  - 61
EP  - 66
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2020_3_a9/
LA  - ru
ID  - PFMT_2020_3_a9
ER  - 
%0 Journal Article
%A S. M. Gorsky
%A V. I. Murashka
%T $\mathfrak{H}_p\mathfrak{H}_q$-convex functions and generalization of the H\"older, Minkowski, and Muirhead inequalities
%J Problemy fiziki, matematiki i tehniki
%D 2020
%P 61-66
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2020_3_a9/
%G ru
%F PFMT_2020_3_a9
S. M. Gorsky; V. I. Murashka. $\mathfrak{H}_p\mathfrak{H}_q$-convex functions and generalization of the H\"older, Minkowski, and Muirhead inequalities. Problemy fiziki, matematiki i tehniki, no. 3 (2020), pp. 61-66. http://geodesic.mathdoc.fr/item/PFMT_2020_3_a9/

[1] V.I. Murashko, S.M. Gorskii, Ya.I. Sandrygailo, “$\mathfrak{K}_\varphi\mathfrak{K}_\psi$-vypuklye funktsii i obobscheniya klassicheskikh neravenstv”, Problemy fiziki, matematiki i tekhniki, 2018, no. 4 (37), 98–102

[2] C.P. Niculescu, “Convexity according to means”, J. Math. Ineq. Appl., 6:4 (2003), 571–579 | MR | Zbl

[3] Á. Baricz, “Geometrically concave univariate distributions”, J. Math. Ineq. Appl., 363 (2010), 182–196 | MR | Zbl

[4] M.K. Vamanamurthy, M. Vuorinen, “Generalized convexity and inequalities”, J. Math. Anal. Appl., 335 (2007), 1294–1308 | DOI | MR | Zbl

[5] Y. Li, X.-M. Gu, J. Xiao, A note of proofs of generalized Radon inequality, arXiv: 1504.05874v3 | MR

[6] B.C. Arnold, Majorization and the Lorenz Order: A Brief Introduction, Lecture Notes in Statistics, 43, Springer-Verlag, 1987 | DOI | MR | Zbl