Mots-clés : text summarisation.
@article{PFMT_2020_3_a15,
author = {I. V. Timokhin and N. B. Osipenko},
title = {Automation of headline generation for news articles},
journal = {Problemy fiziki, matematiki i tehniki},
pages = {92--94},
year = {2020},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/PFMT_2020_3_a15/}
}
I. V. Timokhin; N. B. Osipenko. Automation of headline generation for news articles. Problemy fiziki, matematiki i tehniki, no. 3 (2020), pp. 92-94. http://geodesic.mathdoc.fr/item/PFMT_2020_3_a15/
[1] I. Sutskever, O. Vinyals, Q.V. Le, Sequence to Sequence Learning with Neural Networks, 2014, arXiv: (Date of access: 01.10.2019) 1409.3215 | Zbl
[2] D. Bahdanau, K. Cho, Y. Bengio, Neural Machine Translation by Jointly Learning to Align and Translate, 2014, arXiv: (Date of access: 01.10.2019) 1409.0473
[3] Chin-Yew Lin, “Rouge: A package for automatic evaluation of summaries”, Text summarization branches out, 2004, 74–81
[4] P. Xu, P. Fung, A novel repetition normalized adversarial reward for headline generation, 2019, arXiv: (Date of access: 01.10.2019) 1902.07110
[5] D. Gavrilov, P. Kalaidin, V. Malykh, Self-Attentive Model for Headline Generation, 2019, arXiv: (Date of access: 01.10.2019) 1901.07786
[6] A.M. Rush, S. Chopra, J. Weston, A Neural Attention Model for Abstractive Sentence Summarization, 2015, arXiv: (Date of access: 01.10.2019) 1509.00685