Finite groups with restrictions on the Schmidt subgroups
Problemy fiziki, matematiki i tehniki, no. 3 (2020), pp. 78-81

Voir la notice de l'article provenant de la source Math-Net.Ru

Throughout the article, all groups are finite and $G$ always denotes a finite group. A subgroup $H$ of the group $G$ is called $\mathfrak{U}$-normal in $G$ if every chief factor of the group $G$ between $H^G$ and$H_G$ is cyclic. In this article, it is proved that if each Schmidt subgroup of the group $G$ is either subnormal or $\mathfrak{U}$-normal in $G$, then the derived subgroup $G'$ is nilpotent. Some well-known results are generalized.
Keywords: finite group, nilpotent group, subnormal subgroup, $\mathfrak{U}$-normal subgroup, Schmidt group.
@article{PFMT_2020_3_a12,
     author = {V. M. Sel'kin and I. V. Blisnets},
     title = {Finite groups with restrictions on the {Schmidt} subgroups},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {78--81},
     publisher = {mathdoc},
     number = {3},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2020_3_a12/}
}
TY  - JOUR
AU  - V. M. Sel'kin
AU  - I. V. Blisnets
TI  - Finite groups with restrictions on the Schmidt subgroups
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2020
SP  - 78
EP  - 81
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2020_3_a12/
LA  - ru
ID  - PFMT_2020_3_a12
ER  - 
%0 Journal Article
%A V. M. Sel'kin
%A I. V. Blisnets
%T Finite groups with restrictions on the Schmidt subgroups
%J Problemy fiziki, matematiki i tehniki
%D 2020
%P 78-81
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2020_3_a12/
%G ru
%F PFMT_2020_3_a12
V. M. Sel'kin; I. V. Blisnets. Finite groups with restrictions on the Schmidt subgroups. Problemy fiziki, matematiki i tehniki, no. 3 (2020), pp. 78-81. http://geodesic.mathdoc.fr/item/PFMT_2020_3_a12/