A criterion for the existence and uniqueness of polyorthogonal polynomials of the second type
Problemy fiziki, matematiki i tehniki, no. 2 (2020), pp. 85-90.

Voir la notice de l'article provenant de la source Math-Net.Ru

New concepts are introduced in the work: an admissible index and an almost perfect system of functions. Using these concepts for an arbitrary system of power series of Laurent type a criterion for the uniqueness of an associated with this system of a polyorthogonal polynomial is formulated and proved. The explicit form of this polynomial is found, as well as the explicit form of polynomials standing in the numerator and denominator of the corresponding of Pade approximations. The propositions proved complement the well-known results the in theory of polyorthogonal polynomials and Pade approximations.
Keywords: Padé approximations, normal index, perfect system, Hankel determinant.
Mots-clés : polyorthogonal polynomials
@article{PFMT_2020_2_a15,
     author = {N. V. Ryabchenko and D. A. Volkov and A. P. Starovoitov},
     title = {A criterion for the existence and uniqueness of polyorthogonal polynomials of the second type},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {85--90},
     publisher = {mathdoc},
     number = {2},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2020_2_a15/}
}
TY  - JOUR
AU  - N. V. Ryabchenko
AU  - D. A. Volkov
AU  - A. P. Starovoitov
TI  - A criterion for the existence and uniqueness of polyorthogonal polynomials of the second type
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2020
SP  - 85
EP  - 90
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2020_2_a15/
LA  - ru
ID  - PFMT_2020_2_a15
ER  - 
%0 Journal Article
%A N. V. Ryabchenko
%A D. A. Volkov
%A A. P. Starovoitov
%T A criterion for the existence and uniqueness of polyorthogonal polynomials of the second type
%J Problemy fiziki, matematiki i tehniki
%D 2020
%P 85-90
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2020_2_a15/
%G ru
%F PFMT_2020_2_a15
N. V. Ryabchenko; D. A. Volkov; A. P. Starovoitov. A criterion for the existence and uniqueness of polyorthogonal polynomials of the second type. Problemy fiziki, matematiki i tehniki, no. 2 (2020), pp. 85-90. http://geodesic.mathdoc.fr/item/PFMT_2020_2_a15/

[1] E.M. Nikishin, V.N. Sorokin, Ratsionalnye approksimatsii i ortogonalnost, Nauka, M., 1988

[2] A.I. Aptekarev, F. Marcellán, I. Rocha, “Semiclassical multiple orthogonal polynomials and the properties of Jacobi–Bessel polynomials”, J. Approx. Theory, 90:1 (1997), 177–146 | MR

[3] A.I. Aptekarev, “Multiple orthogonal polynomials”, Comput. Appl. Math., 99:1–2 (1998), 423–447 | MR | Zbl

[4] A.I. Aptekarev, V. Kaliaguine, J. Van Iseghem, “The genetic sums' representation for the moments of a system of Stieltjes functions and its application”, Constr. Approx., 16 (2000), 487–524 | MR | Zbl

[5] W. Van Assche, E. Coussement, “Some classical multiple orthogonal polynomials”, J. Comput. Appl. Math., 127 (2001), 317–347 | MR | Zbl

[6] A.I. Aptekarev, A. Branquinho, W. Van Assche, “Multiple orthogonal polynomials for classcal weights”, Transactions of the American Mathematical Society, 355:10 (2003), 3887–3914 | MR | Zbl

[7] A.B.J. Kuijlaars, A. Martínez-Finkelshtein, F. Wielonsky, “Non-intersecting squared Bessel paths and multiple orthogonal polynomials for modified Bessel weights”, Comm. Math. Phys., 286:1 (2009), 217–275 | MR | Zbl

[8] I.P. Natanson, Konstruktivnaya teoriya funktsii, GITTL, M.–L., 1949

[9] E. Frank, “Orthogonality properties of C-fractions”, Bull. Amer. Math. Soc., 58 (1955), 384–390 | MR

[10] F. Beukers, “A note on the irrationality of $\zeta(2)$ and $\zeta(3)$”, Bull. London Math. Soc., 11 (1979), 268–272 | MR | Zbl

[11] V.N. Sorokin, “Approksimatsii Ermita–Pade dlya sistem Nikishina i irratsionalnost chisla $\zeta(3)$”, UMN, 49:2 (1994), 167–168

[12] V.A. Kalyagin, “Approksimatsii Ermita–Pade i spektralnyi analiz nesimmetrichnykh operatorov”, Matem. sb., 185:6 (1994), 79–100

[13] A.I. Aptekarev, V.A. Kalyagin, E.B. Saff, “Higher-order three-term recurrences and asymptotics of multiple orthogonal polynomials”, Constr. Approx., 30:2 (2009), 175–223 | MR | Zbl

[14] E. Daems, A.B.J. Kuijlaars, “Multiple orthogonal polynomials of mixed type and non-intersecting Brownian motions”, J. Approx. Theory, 146:1 (2007), 91–114 | MR | Zbl

[15] A.B.J. Kuijlaars, L. Zhang, “Singular values of products of Ginibre random matrices, multiple orthogonal polynomials and hard edge scalings”, Comm. Math. Phys., 332:2 (2014), 750–781 | MR

[16] E. Mukhin, A. Varchenko, “Multiple orthogonal polynomials and a counterexample to the Gaudin Bethe Ansatz conjecture”, Trans. Amer. Math. Soc., 359:11 (2007), 5383–5418 | MR | Zbl