On the coincidence of generalized smoothness modules on some class of functions
Problemy fiziki, matematiki i tehniki, no. 2 (2020), pp. 69-70.

Voir la notice de l'article provenant de la source Math-Net.Ru

The coincidence of generalized modules of smoothness of order $k$, determined with the help of the generalized shift operator, with different and identical shifts is proved.
Keywords: generalized shift operator, generalized modulus of smoothness.
@article{PFMT_2020_2_a11,
     author = {G. N. Kazimirov},
     title = {On the coincidence of generalized smoothness modules on some class of functions},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {69--70},
     publisher = {mathdoc},
     number = {2},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2020_2_a11/}
}
TY  - JOUR
AU  - G. N. Kazimirov
TI  - On the coincidence of generalized smoothness modules on some class of functions
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2020
SP  - 69
EP  - 70
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2020_2_a11/
LA  - ru
ID  - PFMT_2020_2_a11
ER  - 
%0 Journal Article
%A G. N. Kazimirov
%T On the coincidence of generalized smoothness modules on some class of functions
%J Problemy fiziki, matematiki i tehniki
%D 2020
%P 69-70
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2020_2_a11/
%G ru
%F PFMT_2020_2_a11
G. N. Kazimirov. On the coincidence of generalized smoothness modules on some class of functions. Problemy fiziki, matematiki i tehniki, no. 2 (2020), pp. 69-70. http://geodesic.mathdoc.fr/item/PFMT_2020_2_a11/

[1] M.K. Potapov, “Ob usloviyakh sovpadeniya nekotorykh klassov funktsii”, Trudy Seminara im. I.G. Petrovskogo, 6, 1981, 223–238 | Zbl

[2] G.N. Kazimirov, O teoremakh Dzheksona dlya k-go obobschennogo modulya gladkosti, Dep. v VINITI RAN 27.12.94, No 3054-V94, 40 pp.

[3] G.N. Kazimirov, “Ekvivalentnaya strukturnaya kharakteristika dannogo obobschennogo modulya gladkosti”, Problemy fiziki, matematiki i tekhniki, 2010, no. 3(4), 49–51 | MR