One- and two-soliton solutions of the Korteweg-de Vries equation in various coordinate systems
Problemy fiziki, matematiki i tehniki, no. 2 (2020), pp. 7-10.

Voir la notice de l'article provenant de la source Math-Net.Ru

The Korteweg-de Vries equation is considered in the two systems of coordinates: in a rest system and in a system moving with some velocity. One- and two-soliton solutions for the both equations are presented and analyzed.
Keywords: Korteweg-de Vries equation, two-soliton solution, Hirota direct method.
Mots-clés : one-soliton solution
@article{PFMT_2020_2_a0,
     author = {M. A. Knyazev},
     title = {One- and two-soliton solutions of the {Korteweg-de} {Vries} equation in various coordinate systems},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {7--10},
     publisher = {mathdoc},
     number = {2},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2020_2_a0/}
}
TY  - JOUR
AU  - M. A. Knyazev
TI  - One- and two-soliton solutions of the Korteweg-de Vries equation in various coordinate systems
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2020
SP  - 7
EP  - 10
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2020_2_a0/
LA  - ru
ID  - PFMT_2020_2_a0
ER  - 
%0 Journal Article
%A M. A. Knyazev
%T One- and two-soliton solutions of the Korteweg-de Vries equation in various coordinate systems
%J Problemy fiziki, matematiki i tehniki
%D 2020
%P 7-10
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2020_2_a0/
%G ru
%F PFMT_2020_2_a0
M. A. Knyazev. One- and two-soliton solutions of the Korteweg-de Vries equation in various coordinate systems. Problemy fiziki, matematiki i tehniki, no. 2 (2020), pp. 7-10. http://geodesic.mathdoc.fr/item/PFMT_2020_2_a0/

[1] Dzh. Uizem, Lineinye i nelineinye volny, Mir, M., 1977, 624 pp.

[2] V.E. Zakharov, S.V. Manakov, S.P. Novikov, L.P. Pitaevskii, Teoriya solitonov: Metod obratnoi zadachi, Nauka, M., 1980, 320 pp.

[3] Dzh. L. Lem, Vvedenie v teoriyu solitonov, Mir, M., 1983, 294 pp.

[4] M. Ablovits, Kh. Sigur, Solitony i metod obratnoi zadachi, Mir, M., 1987, 479 pp.

[5] R. Dodd, Dzh. Eilbek, Dzh. Gibbon, Kh. Morris, Solitony i nelineinye volnovye uravneniya, Mir, M., 1988, 694 pp.

[6] A. Nyuell, Solitony v matematike i fizike, Mir, M., 1989, 326 pp.

[7] A.M. Kosevich, A.S. Kovalev, Vvedenie v nelineinuyu fizicheskuyu mekhaniku, Naukova dumka, Kiev, 1989, 304 pp.

[8] M.J. Ablowitz, P.A. Clarkson, Solitons, nonlinear evolution equations and inverse scattering, Cambridge University Press, 1991, 516 pp. | MR | Zbl

[9] M. Remoissenet, Waves called solitons, concepts and experiments, Springer, Berlin–New York, 1996, 260 pp. | MR | Zbl

[10] E. Infeld, Dzh. Roulands, Nelineinye volny, solitony i khaos, Fizmatlit, M., 2005, 480 pp.

[11] A. Karszewska, P. Rozmej, “Remarks on existence / nonexistence of analytic solutions to higher order KdV equations”, Acta Physica Polonica A, 136 (2019), 910–915 | MR

[12] R. Hirota, “Direct methods in soliton theory”, Solitons, eds. Bullough R. K., Caudrey P. J., Springer, Berlin, 1980, 157–176 | MR