Finite groups with generalized $\sigma$-subnormal and $\sigma$-permutable subgroups
Problemy fiziki, matematiki i tehniki, no. 1 (2020), pp. 65-73.

Voir la notice de l'article provenant de la source Math-Net.Ru

Throughout this paper, all groups are finite and $G$ always denotes a finite group. We say that a subgroup $H$ of $G$ is nearly modular in $G$ if either $A$ is normal in $G$ or $H_g\ne H^G$ and every chief factor $H/K$ of $G$ between $H_G$ and $H^G$ is nearly central in $G$, that is, $|H/K||GC_G(H/K)|$ divides $pq$ for some primes $p$ and $q$. We say that a subgroup $A$ of $G$ is: (i) nearly $\sigma$-subnormal in $G$ if $A=\langle L,T\rangle$, where $L$ is a nearly modular subgroup and $T$ is a $\sigma$-subnormal subgroup of $G$; (ii) nearly $\sigma$-permutable in $G$ if $A=\langle L,T\rangle$, where $L$ is a nearly modular subgroup and $T$ is a $\sigma$-permutable subgroup of $G$. (iii) weakly $\sigma$-permutable in $G$ if there are a nearly $\sigma$-permutable subgroup $S$ and a subgroup $T$ of $G$ such that $G=HT$ and $H\cap T\leqslant S\leqslant H$. In the given paper, we study finite groups with some systems of nearly $\sigma$-subnormal, nearly $\sigma$-permutable and weakly $\sigma$-permutable subgroups. Some known results are generalized.
Keywords: finite group, $n$-maximal subgroup, nearly $\sigma$-subnormal subgroup, nearly $\sigma$-permutable subgroup, $\sigma$-nearly nilpotent group.
@article{PFMT_2020_1_a9,
     author = {N. M. Adarchenko and A. N. Skiba},
     title = {Finite groups with generalized $\sigma$-subnormal and $\sigma$-permutable subgroups},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {65--73},
     publisher = {mathdoc},
     number = {1},
     year = {2020},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2020_1_a9/}
}
TY  - JOUR
AU  - N. M. Adarchenko
AU  - A. N. Skiba
TI  - Finite groups with generalized $\sigma$-subnormal and $\sigma$-permutable subgroups
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2020
SP  - 65
EP  - 73
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2020_1_a9/
LA  - en
ID  - PFMT_2020_1_a9
ER  - 
%0 Journal Article
%A N. M. Adarchenko
%A A. N. Skiba
%T Finite groups with generalized $\sigma$-subnormal and $\sigma$-permutable subgroups
%J Problemy fiziki, matematiki i tehniki
%D 2020
%P 65-73
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2020_1_a9/
%G en
%F PFMT_2020_1_a9
N. M. Adarchenko; A. N. Skiba. Finite groups with generalized $\sigma$-subnormal and $\sigma$-permutable subgroups. Problemy fiziki, matematiki i tehniki, no. 1 (2020), pp. 65-73. http://geodesic.mathdoc.fr/item/PFMT_2020_1_a9/

[1] A.N. Skiba, “On $\sigma$-subnormal and $\sigma$-permutable subgroups of finite groups”, J. Algebra, 436 (2015), 1–16 | DOI | MR | Zbl

[2] A.N. Skiba, “Some characterizations of finite $\sigma$-soluble $P\sigma T$-groups”, J. Algebra, 495 (2018), 114–129 | DOI | MR | Zbl

[3] A.N. Skiba, “A generalization of a Hall theorem”, J. Algebra and its Application, 15 (2016), 21–36 | DOI | MR

[4] J.C. Beidleman, A.N. Skiba, “On $\tau_\sigma$-quasinormal subgroups of finite groups”, J. Group Theory, 20:5 (2017), 955–964 | DOI | MR

[5] J. Huang, B. Hu, X. Wu, “Finite groups all of whose subgroups are $\sigma$-subnormal or $\sigma$-abnormal”, Comm. Algebra, 45:1 (2017), 4542–4549 | DOI | MR | Zbl

[6] Kh.A. Al-Sharo, A.N. Skiba, “On finite groups with $\sigma$-subnormal Schmidt subgroups”, Comm. Algebra, 45 (2017), 4158–4165 | DOI | MR | Zbl

[7] B. Hu, J. Huang, A.N. Skiba, “Groups with only $\sigma$-semipermutable and $\sigma$-abnormal subgroups”, Acta Math. Hung., 153:1 (2017), 236–248 | DOI | MR | Zbl

[8] B. Hu, J. Huang, A.N. Skiba, “On finite groups with generalized $\sigma$-subnormal Schmidt subgroups”, Comm. Algebra, 46:4 (2018), 1758–1769 | DOI | MR | Zbl

[9] W. Guo, A.N. Skiba, “On $\Pi$-quasinormal subgroups of finite groups”, Monatsh. Math., 185:3 (2016), 1–11 | MR

[10] W. Guo, A.N. Skiba, “On $\sigma$-supersoluble groups and one generalization of $CLT$-groups”, J. Algebra, 512 (2018), 92–108 | DOI | MR | Zbl

[11] V.A. Kovaleva, “A criterion for a finite group to be $\sigma$-soluble”, Comm. Algebra, 46:12 (2019), 5410–5415 | DOI | MR

[12] A.N. Skiba, “On some classes of sublattices of the subgroup lattice”, J. Belarusian State Univ. Math. Informatics, 3 (2019), 35–47 | DOI | MR | Zbl

[13] W. Guo, A.N. Skiba, “Finite groups whose $n$-maximal subgroups are $\sigma$-subnormal”, Science China. Mathematics, 62:7 (2019), 1355–1372 | DOI | MR | Zbl

[14] A.N. Skiba, “On sublattices of the subgroup lattice defined by formation Fitting sets”, J. Algebra, 550 (2020), 69–85 | DOI | MR | Zbl

[15] N.M. Adarchenko, A.N. Skiba, Finite groups with generalized S-permutable subgroups, Preprint, 2019 | MR | Zbl

[16] A.E. Spencer, “Maximal nonnormal chains in finite groups”, Pacific J. Math., 27 (1968), 167–173 | DOI | MR | Zbl

[17] R.K. Agrawal, “Generalized center and hypercenter of a finite group”, Proc. Amer. Math. Soc., 54 (1976), 13–21 | DOI | MR

[18] B. Huppert, “Normalteiler und maximale Untergruppen endlicher Gruppen”, Math. Z., 60 (1954), 409–434 | DOI | MR | Zbl

[19] R. Schmidt, Subgroup Lattices of Groups, Walter de Gruyter, Berlin, 1994 | MR | Zbl

[20] R. Schmidt, “Endliche Gruppen mit vilen modularen Untergruppen”, Abhan. Math. Sem. Univ. Hamburg, 34 (1970), 115–125 | DOI | MR

[21] B. Hu, J. Huang, A.N. Skiba, “Om generalized S-quasinorma and generalized subnormal subgroups of finite groups”, Comm. Algebra, 46:4 (2018), 1758–1769 | DOI | MR | Zbl

[22] D. Gorenstein, Finite Groups, Harper Row Publishers, New York–Evanston–London, 1968 | MR | Zbl

[23] B. Huppert, Endliche Gruppen, v. I, Springer-Verlag, Berlin–Heidelberg–New York, 1967 | MR | Zbl

[24] K. Doerk, T. Hawkes, Finite Soluble Groups, Walter de Gruyter, Berlin–New York, 1992 | MR

[25] V.A. Vasilyev, “Finite groups with submodular Sylow subgroups”, Siberian Math. J., 56:6 (2015), 1019–1027 | DOI | MR | Zbl

[26] N.M. Adarchenko, A.N. Skiba, Finite groups with the given systems of generalized $\sigma$-permutable subgroups, Preprint, 2019 | MR | Zbl

[27] A. Ballester-Bolinches, R. Esteban-Romero, M. Asaad, Products of Finite Groups, Walter de Gruyter, Berlin–New York, 2010 | MR | Zbl

[28] J.G. Thompson, “Nonsolvable finite groups all of whose local subgroups are solvable”, Bull. Amer. Math. Soc., 74:3 (1968), 383–437 | DOI | MR | Zbl

[29] D. Gorenstein, Finite Simple Groups, Plenum Press, New York–Evanston–London, 1982 | MR | Zbl