Integration of data from inertial, barometric, magnetometric and satellite navigation systems
Problemy fiziki, matematiki i tehniki, no. 1 (2020), pp. 45-49.

Voir la notice de l'article provenant de la source Math-Net.Ru

The use of a two-stage Kalman filter scheme for integrating data from autonomous and satellite navigation systems is considered. This allows us to solve the problem of different data update rates in autonomous and satellite navigation systems, as well as to obtain an optimal estimate of the state of a dynamic system based on measurements that inevitably contain errors.
Keywords: inertial-satellite navigation systems, Kalman filter, data stream aggregation
Mots-clés : navigation solution.
@article{PFMT_2020_1_a5,
     author = {K. V. Kozadaev},
     title = {Integration of data from inertial, barometric, magnetometric and satellite navigation systems},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {45--49},
     publisher = {mathdoc},
     number = {1},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2020_1_a5/}
}
TY  - JOUR
AU  - K. V. Kozadaev
TI  - Integration of data from inertial, barometric, magnetometric and satellite navigation systems
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2020
SP  - 45
EP  - 49
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2020_1_a5/
LA  - ru
ID  - PFMT_2020_1_a5
ER  - 
%0 Journal Article
%A K. V. Kozadaev
%T Integration of data from inertial, barometric, magnetometric and satellite navigation systems
%J Problemy fiziki, matematiki i tehniki
%D 2020
%P 45-49
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2020_1_a5/
%G ru
%F PFMT_2020_1_a5
K. V. Kozadaev. Integration of data from inertial, barometric, magnetometric and satellite navigation systems. Problemy fiziki, matematiki i tehniki, no. 1 (2020), pp. 45-49. http://geodesic.mathdoc.fr/item/PFMT_2020_1_a5/

[1] M. Grewal, L. Weill, P. Andrews, Global Positioning Systems, Inertial Navigation and Integration, John Wiley and Sons Inc., London, 2001, 392 pp.

[2] V.V. Matveev, V.Ya. Raspopov, Osnovy postroeniya besplatformennykh inertsialnykh navigatsionnykh sistem, ed. V.Ya. Raspopov, Elektropribor, SPb, 2009, 280 pp.

[3] E.-H. Shin, Techniques for Low-Cost Inertial Navigation, Department of Geomatics Engineering Calgary, Alberta, 2005, 206 pp.

[4] B.S. Aleshin, Orientatsiya i navigatsiya podvizhnykh ob'ektov, eds. B.S. Aleshin, K.K. Veremeenko, A.I. Chernomorskii, Fizmatlit, M., 2006, 422 pp.

[5] K.V. Kozadaev i dr., “Kompleksirovanie dannykh navigatsionnykh sistem na osnove nelineinogo filtra Kalmana”, Informatika, 2012, no. 1, 106–114

[6] K.V. Kozadaev, A.E. Makarenko, “Povyshenie tochnosti inertsialno-sputnikovoi navigatsionnoi sistemy v rezhime nepodvizhnosti”, Informatika, 2017, no. 2, 113–120

[7] K.V. Kozadaev, A.E. Makarenko, “Algoritm povysheniya tochnosti slabosvyazannoi inertsialno-sputnikovoi navigatsionnoi sistemy na osnove filtra Kalmana dlya oshibok BINS”, Elektronika-info, 2015, no. 9, 45–48

[8] M.N. Krasilschikov, Upravlenie i navedenie bespilotnykh manevrennykh letatelnykh apparatov na osnove sovremennykh informatsionnykh tekhnologii, eds. M.N. Krasilschikov, G.G. Serbryakov, Fizmatlit, M., 2003, 280 pp.

[9] E.D. Kaplan, E.D. Grewal, C.J. Hegarty, Understanding GPS. Principles and Applications, Artech Hous, London, 2006, 707 pp.