Deformation of a three-layer circular plate under cosine loading in its plane
Problemy fiziki, matematiki i tehniki, no. 1 (2020), pp. 85-90.

Voir la notice de l'article provenant de la source Math-Net.Ru

The displacements in a round three-layer plate asymmetric in thickness under non-axisymmetric loading in its plane are investigated. The distributed load, depending on the radial and tangential coordinates, is applied in the median plane of the aggregate. Equilibrium equations are obtained by the variational Lagrange method. The general decision is written out in the Fourier series. The final solution is given for a cosine load. It was numerically tested.
Keywords: three-layer round plate, displacements, axisymmetric tension-compression, cosine load.
@article{PFMT_2020_1_a12,
     author = {A. V. Nestsiarovich},
     title = {Deformation of a three-layer circular plate under cosine loading in its plane},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {85--90},
     publisher = {mathdoc},
     number = {1},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2020_1_a12/}
}
TY  - JOUR
AU  - A. V. Nestsiarovich
TI  - Deformation of a three-layer circular plate under cosine loading in its plane
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2020
SP  - 85
EP  - 90
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2020_1_a12/
LA  - ru
ID  - PFMT_2020_1_a12
ER  - 
%0 Journal Article
%A A. V. Nestsiarovich
%T Deformation of a three-layer circular plate under cosine loading in its plane
%J Problemy fiziki, matematiki i tehniki
%D 2020
%P 85-90
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2020_1_a12/
%G ru
%F PFMT_2020_1_a12
A. V. Nestsiarovich. Deformation of a three-layer circular plate under cosine loading in its plane. Problemy fiziki, matematiki i tehniki, no. 1 (2020), pp. 85-90. http://geodesic.mathdoc.fr/item/PFMT_2020_1_a12/

[1] M.A. Zhuravkov, E.I. Starovoitov, Mekhanika sploshnykh sred. Teoriya uprugosti i plastichnosti, BGU, Minsk, 2011, 540 pp.

[2] E.I. Starovoitov, M.A. Zhuravkov, D.V. Leonenko, Trekhsloinye sterzhni v termoradiatsionnykh polyakh, Belaruskaya navuka, Minsk, 2017, 275 pp.

[3] E.I. Starovoitov, F.B. Nagiyev, Foundations of the theory of elasticity, plasticity, and viscoelasticity, Apple Academic Press, New York, 2012, 346 pp.

[4] E.I. Starovoitov, Soprotivlenie materialov, Fizmatlit, M., 2008, 384 pp.

[5] E.I. Starovoitov, D.V. Leonenko, A.V. Yarovaya, “Kolebaniya krugovykh trekhsloinykh plastin pod deistviem raspredelennykh lokalnykh nagruzok”, Problemy prochnosti, 34:5 (2002), 70–79

[6] A.G. Gorshkov, E.I. Starovoitov, D.V. Leonenko, “Kolebaniya trekhsloinykh sterzhnei pod deistviem lokalnykh nagruzok razlichnykh form”, Ekologicheskii vestnik nauchnykh tsentrov chernomorskogo ekonomicheskogo sotrudnichestva, 2004, no. 1, 45–52

[7] E.I. Starovoitov, D.V. Leonenko, “Resonant effects of local loads on circular sandwich plates on an elastic foundation”, International Applied Mechanics, 46:1 (2010), 86–93 | DOI | MR | Zbl

[8] E.I. Starovoitov, D.V. Leonenko, “Kolebaniya krugovykh kompozitnykh plastin na uprugom osnovanii pod deistviem lokalnykh nagruzok”, Mekhanika kompozitnykh materialov, 52:5 (2016), 943–954

[9] E.I. Starovoitov, D.V. Leonenko, A.V. Yarovaya, “Circular sandwich plates under local impulsive loads”, International Applied Mechanics, 39:8 (2003), 945–952 | DOI | Zbl

[10] V.S. Deshpande, N.A. Fleck, “Dynamic Response of a Clamped Circular Sandwich Plate Subject to Shock Loading”, J. Appl. Mech., 71:5 (2004), 637–645 | DOI | Zbl

[11] E.I. Starovoitov, D.V. Leonenko, A.V. Yarovaya, “Vibrations of circular sandwich plates under resonant loads”, International Applied Mechanics, 39:12 (2003), 1458–1463 | DOI | Zbl

[12] D.V. Leonenko, L.N. Rabinskii, E.I. Starovoitov, “Kolebaniya elementov aviatsionnykh konstruktsii, vozbuzhdennye teplovym vozdeistviem”, Izvestiya vuzov. Aviatsionnaya tekhnika, 2016, no. 4, 25–32

[13] E.I. Starovoitov, A.V. Popchenko, D.V. Tarlakovskii, “Izgib s rastyazheniem trekhsloinogo termouprugogo sterzhnya”, Teoreticheskaya i prikladnaya mekhanika, 2013, no. 28, 23–26

[14] A.S. Zelenaya, “Napryazhenno-deformirovannoe sostoyanie termouprugoi trekhsloinoi pryamougolnoi plastiny so szhimaemym zapolnitelem”, Izvestiya Gomelskogo gosudarstvennogo universiteta im. F. Skoriny, 2018, no. 6(111), 98–104

[15] E.I. Starovoitov, D.V. Leonenko, M. Suleiman, “Termouprugii izgib koltsevoi trekhsloinoi plastiny na uprugom osnovanii”, Ekologicheskii vestnik nauchnykh tsentrov Chernomorskogo ekonomicheskogo sotrudnichestva, 2006, no. 4, 55–62

[16] E.I. Starovoitov, D.V. Leonenko, D.V. Tarlakovskii, “Deformirovanie trekhsloinoi krugovoi tsilindricheskoi obolochki v temperaturnom pole”, Problemy mashinostroeniya i avtomatizatsii, 2016, no. 1, 91–97

[17] É.I. Starovoitov, D.V. Leonenko, “Thermoelastic bending of a sandwich ring plate on an elastic foundation”, International Applied Mechanics, 44:9 (2008), 1032–1040 | DOI | MR

[18] E.I. Starovoitov, A.V. Yarovaya, D.V. Leonenko, “Deformirovanie uprugogo trekhsloinogo sterzhnya lokalnymi nagruzkami”, Problemy mashinostroeniya i avtomatizatsii, 2001, no. 4, 37–40

[19] A.G. Kozel, “Deformirovanie krugovoi trekhsloinoi plastiny, zaschemlennoi po konturu, na osnovanii Pasternaka”, Teoreticheskaya i prikladnaya mekhanika, 2018, no. 33, 318–323

[20] A.G. Kozel, “Peremescheniya v krugovoi trekhsloinoi plastine na dvukhparametricheskom osnovanii”, Mekhanika. Issledovaniya i innovatsii, 2017, no. 10, 90–95

[21] A.G. Kozel, “Matematicheskaya model deformirovaniya krugovoi trekhsloinoi plastiny na osnovanii Pasternaka”, Problemy fiziki, matematiki i tekhniki, 2017, no. 1(30), 42–46

[22] A.G. Kozel, “Vliyanie sdvigovoi zhestkosti osnovaniya na napryazhennoe sostoyanie sendvich-plastiny”, Fundamentalnye i prikladnye problemy tekhniki i tekhnologii, 2018, no. 6 (332), 25–35

[23] Yu.V. Zakharchuk, “Deformirovanie krugovoi trekhsloinoi plastiny so szhimaemym zapolnitelem”, Problemy fiziki, matematiki i tekhniki, 2017, no. 4(33), 53–57

[24] Yu.V. Zakharchuk, “Peremescheniya v krugovoi trekhsloinoi plastine so szhimaemym zapolnitelem”, Mekhanika. Issledovaniya i innovatsii, 2017, no. 10, 55–66

[25] Yu.V. Zakharchuk, “Trekhsloinaya krugovaya uprugoplasticheskaya plastina so szhimaemym zapolnitelem”, Problemy fiziki, matematiki i tekhniki, 2018, no. 4(37), 72–79

[26] A.V. Nesterovich, “Neosesimmetrichnoe termosilovoe deformirovanie krugovoi odnosloinoi plastiny”, Problemy fiziki, matematiki i tekhniki, 2016, no. 2(27), 54–61

[27] A.V. Nesterovich, “Napryazheniya v krugovoi plastine tipa Timoshenko pri neosesimmetrichnom rastyazhenii-szhatii”, Mekhanika. Issledovaniya i innovatsii, 2018, no. 11, 195–203

[28] A.V. Nesterovich, “Uravneniya ravnovesiya trekhsloinoi krugovoi plastiny pri neosesimmetrichnom nagruzhenii”, Teoreticheskaya i prikladnaya mekhanika, 2019, no. 34, 154–159

[29] A.V. Nesterovich, “Neosesimmetrichnoe nagruzhenie trekhsloinoi krugovoi plastiny v svoei ploskosti”, Teoreticheskaya i prikladnaya mekhanika, 2020, no. 35, 266–272

[30] A.V. Nesterovich, “Napryazhennoe sostoyanie krugovoi trekhsloinoi plastiny pri osesimmetrichnom nagruzhenii v svoei ploskosti”, Mekhanika. Issledovaniya i innovatsii, 2019, no. 12, 152–157