Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PFMT_2020_1_a12, author = {A. V. Nestsiarovich}, title = {Deformation of a three-layer circular plate under cosine loading in its plane}, journal = {Problemy fiziki, matematiki i tehniki}, pages = {85--90}, publisher = {mathdoc}, number = {1}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/PFMT_2020_1_a12/} }
A. V. Nestsiarovich. Deformation of a three-layer circular plate under cosine loading in its plane. Problemy fiziki, matematiki i tehniki, no. 1 (2020), pp. 85-90. http://geodesic.mathdoc.fr/item/PFMT_2020_1_a12/
[1] M.A. Zhuravkov, E.I. Starovoitov, Mekhanika sploshnykh sred. Teoriya uprugosti i plastichnosti, BGU, Minsk, 2011, 540 pp.
[2] E.I. Starovoitov, M.A. Zhuravkov, D.V. Leonenko, Trekhsloinye sterzhni v termoradiatsionnykh polyakh, Belaruskaya navuka, Minsk, 2017, 275 pp.
[3] E.I. Starovoitov, F.B. Nagiyev, Foundations of the theory of elasticity, plasticity, and viscoelasticity, Apple Academic Press, New York, 2012, 346 pp.
[4] E.I. Starovoitov, Soprotivlenie materialov, Fizmatlit, M., 2008, 384 pp.
[5] E.I. Starovoitov, D.V. Leonenko, A.V. Yarovaya, “Kolebaniya krugovykh trekhsloinykh plastin pod deistviem raspredelennykh lokalnykh nagruzok”, Problemy prochnosti, 34:5 (2002), 70–79
[6] A.G. Gorshkov, E.I. Starovoitov, D.V. Leonenko, “Kolebaniya trekhsloinykh sterzhnei pod deistviem lokalnykh nagruzok razlichnykh form”, Ekologicheskii vestnik nauchnykh tsentrov chernomorskogo ekonomicheskogo sotrudnichestva, 2004, no. 1, 45–52
[7] E.I. Starovoitov, D.V. Leonenko, “Resonant effects of local loads on circular sandwich plates on an elastic foundation”, International Applied Mechanics, 46:1 (2010), 86–93 | DOI | MR | Zbl
[8] E.I. Starovoitov, D.V. Leonenko, “Kolebaniya krugovykh kompozitnykh plastin na uprugom osnovanii pod deistviem lokalnykh nagruzok”, Mekhanika kompozitnykh materialov, 52:5 (2016), 943–954
[9] E.I. Starovoitov, D.V. Leonenko, A.V. Yarovaya, “Circular sandwich plates under local impulsive loads”, International Applied Mechanics, 39:8 (2003), 945–952 | DOI | Zbl
[10] V.S. Deshpande, N.A. Fleck, “Dynamic Response of a Clamped Circular Sandwich Plate Subject to Shock Loading”, J. Appl. Mech., 71:5 (2004), 637–645 | DOI | Zbl
[11] E.I. Starovoitov, D.V. Leonenko, A.V. Yarovaya, “Vibrations of circular sandwich plates under resonant loads”, International Applied Mechanics, 39:12 (2003), 1458–1463 | DOI | Zbl
[12] D.V. Leonenko, L.N. Rabinskii, E.I. Starovoitov, “Kolebaniya elementov aviatsionnykh konstruktsii, vozbuzhdennye teplovym vozdeistviem”, Izvestiya vuzov. Aviatsionnaya tekhnika, 2016, no. 4, 25–32
[13] E.I. Starovoitov, A.V. Popchenko, D.V. Tarlakovskii, “Izgib s rastyazheniem trekhsloinogo termouprugogo sterzhnya”, Teoreticheskaya i prikladnaya mekhanika, 2013, no. 28, 23–26
[14] A.S. Zelenaya, “Napryazhenno-deformirovannoe sostoyanie termouprugoi trekhsloinoi pryamougolnoi plastiny so szhimaemym zapolnitelem”, Izvestiya Gomelskogo gosudarstvennogo universiteta im. F. Skoriny, 2018, no. 6(111), 98–104
[15] E.I. Starovoitov, D.V. Leonenko, M. Suleiman, “Termouprugii izgib koltsevoi trekhsloinoi plastiny na uprugom osnovanii”, Ekologicheskii vestnik nauchnykh tsentrov Chernomorskogo ekonomicheskogo sotrudnichestva, 2006, no. 4, 55–62
[16] E.I. Starovoitov, D.V. Leonenko, D.V. Tarlakovskii, “Deformirovanie trekhsloinoi krugovoi tsilindricheskoi obolochki v temperaturnom pole”, Problemy mashinostroeniya i avtomatizatsii, 2016, no. 1, 91–97
[17] É.I. Starovoitov, D.V. Leonenko, “Thermoelastic bending of a sandwich ring plate on an elastic foundation”, International Applied Mechanics, 44:9 (2008), 1032–1040 | DOI | MR
[18] E.I. Starovoitov, A.V. Yarovaya, D.V. Leonenko, “Deformirovanie uprugogo trekhsloinogo sterzhnya lokalnymi nagruzkami”, Problemy mashinostroeniya i avtomatizatsii, 2001, no. 4, 37–40
[19] A.G. Kozel, “Deformirovanie krugovoi trekhsloinoi plastiny, zaschemlennoi po konturu, na osnovanii Pasternaka”, Teoreticheskaya i prikladnaya mekhanika, 2018, no. 33, 318–323
[20] A.G. Kozel, “Peremescheniya v krugovoi trekhsloinoi plastine na dvukhparametricheskom osnovanii”, Mekhanika. Issledovaniya i innovatsii, 2017, no. 10, 90–95
[21] A.G. Kozel, “Matematicheskaya model deformirovaniya krugovoi trekhsloinoi plastiny na osnovanii Pasternaka”, Problemy fiziki, matematiki i tekhniki, 2017, no. 1(30), 42–46
[22] A.G. Kozel, “Vliyanie sdvigovoi zhestkosti osnovaniya na napryazhennoe sostoyanie sendvich-plastiny”, Fundamentalnye i prikladnye problemy tekhniki i tekhnologii, 2018, no. 6 (332), 25–35
[23] Yu.V. Zakharchuk, “Deformirovanie krugovoi trekhsloinoi plastiny so szhimaemym zapolnitelem”, Problemy fiziki, matematiki i tekhniki, 2017, no. 4(33), 53–57
[24] Yu.V. Zakharchuk, “Peremescheniya v krugovoi trekhsloinoi plastine so szhimaemym zapolnitelem”, Mekhanika. Issledovaniya i innovatsii, 2017, no. 10, 55–66
[25] Yu.V. Zakharchuk, “Trekhsloinaya krugovaya uprugoplasticheskaya plastina so szhimaemym zapolnitelem”, Problemy fiziki, matematiki i tekhniki, 2018, no. 4(37), 72–79
[26] A.V. Nesterovich, “Neosesimmetrichnoe termosilovoe deformirovanie krugovoi odnosloinoi plastiny”, Problemy fiziki, matematiki i tekhniki, 2016, no. 2(27), 54–61
[27] A.V. Nesterovich, “Napryazheniya v krugovoi plastine tipa Timoshenko pri neosesimmetrichnom rastyazhenii-szhatii”, Mekhanika. Issledovaniya i innovatsii, 2018, no. 11, 195–203
[28] A.V. Nesterovich, “Uravneniya ravnovesiya trekhsloinoi krugovoi plastiny pri neosesimmetrichnom nagruzhenii”, Teoreticheskaya i prikladnaya mekhanika, 2019, no. 34, 154–159
[29] A.V. Nesterovich, “Neosesimmetrichnoe nagruzhenie trekhsloinoi krugovoi plastiny v svoei ploskosti”, Teoreticheskaya i prikladnaya mekhanika, 2020, no. 35, 266–272
[30] A.V. Nesterovich, “Napryazhennoe sostoyanie krugovoi trekhsloinoi plastiny pri osesimmetrichnom nagruzhenii v svoei ploskosti”, Mekhanika. Issledovaniya i innovatsii, 2019, no. 12, 152–157