Soluble saturated formations with the $\mathcal{P}_2$ property for finite groups
Problemy fiziki, matematiki i tehniki, no. 1 (2020), pp. 74-80.

Voir la notice de l'article provenant de la source Math-Net.Ru

The finite groups that can be represented as a product of pairwise permutable subgroups with formational restrictions on factors and their partial products are studied. In particular, the description of solvable hereditary saturated formations of groups with the property $\mathcal{P}_2$ introduced by B. Amberg, A.S. Kazarin and Hefling is obtained.
Keywords: finite group, product of pairwise permutable subgroups, formation with the $\mathcal{P}_2$ property, formation with the Kegel property, formation with the Shemetkov property.
@article{PFMT_2020_1_a10,
     author = {S. V. Balychev and A. S. Vegera},
     title = {Soluble saturated formations with the $\mathcal{P}_2$ property for finite groups},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {74--80},
     publisher = {mathdoc},
     number = {1},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2020_1_a10/}
}
TY  - JOUR
AU  - S. V. Balychev
AU  - A. S. Vegera
TI  - Soluble saturated formations with the $\mathcal{P}_2$ property for finite groups
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2020
SP  - 74
EP  - 80
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2020_1_a10/
LA  - ru
ID  - PFMT_2020_1_a10
ER  - 
%0 Journal Article
%A S. V. Balychev
%A A. S. Vegera
%T Soluble saturated formations with the $\mathcal{P}_2$ property for finite groups
%J Problemy fiziki, matematiki i tehniki
%D 2020
%P 74-80
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2020_1_a10/
%G ru
%F PFMT_2020_1_a10
S. V. Balychev; A. S. Vegera. Soluble saturated formations with the $\mathcal{P}_2$ property for finite groups. Problemy fiziki, matematiki i tehniki, no. 1 (2020), pp. 74-80. http://geodesic.mathdoc.fr/item/PFMT_2020_1_a10/

[1] A. Ballester-Bolinches, R. Esteban-Romero, M. Asaad, Products of Finite Groups, Walter de Gruyter, Berlin–New York, 2010, 334 pp. | MR | Zbl

[2] B. Amberg, L.S. Kazarin, B. Khefling, “Konechnye gruppy s kratnymi faktorizatsiyami”, Fundamentalnaya i prikladnaya matematika, 4:4 (1998), 1251–1263 | Zbl

[3] L.A. Shemetkov, Formatsii konechnykh grupp, Nauka, M., 1978, 272 pp.

[4] A. Ballester-Bolinches, L.M. Ezquerro, Classes of Finite Groups, Springer, 2006, 385 pp. | MR | Zbl

[5] A.F. Vasilev, “K probleme perechisleniya lokalnykh formatsii s zadannym svoistvom”, Voprosy algebry, 1987, no. 3, 3–11

[6] A.F. Vasilev, “O vliyanii primarnykh $\mathfrak{F}$-subnormalnykh podgrupp na stroenie gruppy”, Voprosy algebry, 1995, no. 8, 31–39

[7] A.F. Vasilev, T.I. Vasileva, “O konechnykh gruppakh s obobschenno subnormalnymi silovskimi podgruppami”, Problemy fiziki, matematiki i tekhniki, 2011, no. 4(9), 86–91

[8] A.F. Vasilev, T.I. Vasileva, A.S. Vegera, “Konechnye gruppy s obobschenno subnormalnym vlozheniem silovskikh podgrupp”, Sib. mat. zhurnal, 57:2 (2016), 259–275 | Zbl

[9] O. H. Kegel, “Zur Struktur mehrfach factorisierbarer endlicher Gruppen”, Math. Z., 87:1 (1965), 42–48 | DOI | MR | Zbl

[10] B. Hupert, Endliche Gruppen, v. I, Springer, Berlin, 1967, 794 pp. | MR

[11] L. S. Kazarin, “Faktorizatsii konechnykh grupp razreshimymi podgruppami”, Ukr. mat. zhurnal, 34:7–8 (1991), 947–950

[12] A.F. Vasilev, T.I. Vasileva, V.N. Tyutyanov, “O konechnykh gruppakh sverkhrazreshimogo tipa”, Sib. mat. zhurnal, 51:6 (2010), 1270–1281 | Zbl

[13] A.F. Vasilev, “O perechislenii lokalnykh formatsii s usloviem Kegelya”, Voprosy algebry, 1995, no. 7, 86–93

[14] A. Ballester-Bolinches, A. Martinez-Pastor, M.C. Pedraza-Aguilera, “Finite trifactorized groups and formations”, J. Algebra, 226:2 (2000), 990–1000 | DOI | MR | Zbl

[15] A. Ballester-Bolinches, L.M. Ezquerro, “On formations with the Kegel property”, J. Group Theory, 2005, no. 8, 605–611 | MR | Zbl

[16] V.N. Semenchuk, A.F. Vasilev, “Kharakterizatsiya lokalnykh formatsii $\mathfrak{F}$po zadannym svoistvam minimalnykh ne $\mathfrak{F}$-grupp”, Issledovanie normalnogo i podgruppovogo stroeniya konechnykh grupp, Nauka i tekhnika, Minsk, 1984, 175–181

[17] A.N. Skiba, “Ob odnom klasse lokalnykh formatsii konechnykh grupp”, Dokl. Akad. nauk BSSR, 34:11 (1990), 382–385

[18] V.I. Murashka, “Soluble formations with the Shemetkov property”, Problemy fiziki, matematiki i tekhniki, 2015, no. 1(22), 82–87 | Zbl

[19] V.S. Monakhov, “O konechnykh gruppakh s zadannym naborom podgrupp Shmidta”, Matematicheskie zametki, 58:5 (1995), 717–722 | Zbl

[20] A.F. Vasilev, V.I. Murashko, “Arifmeticheskie grafy i klassy grupp”, Sib. mat. zhurnal, 60:1 (2019), 55–73 | Zbl