Chains in finite groups
Problemy fiziki, matematiki i tehniki, no. 4 (2019), pp. 70-73

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\mathbb{N}$ and $\mathbb{P}$ be the set of all positive integers and all primes, respectively. A subgroup $H$ of $G$ is called $\mathbb{P}^\infty$-subnormal in $G$ ($H$ $\mathbb{P}^\infty$-$sn$ $G$) if there is a chain $H=H_0\subset H_1\subset\dots\subset H_{n-1}\subset H_n=G$ such that $|H_i:H_{i-1}|\in\mathbb{P}^\infty$ for every $i=1,\dots,n$, where $\mathbb{P}^\infty=\{p^k\mid p\in\mathbb{P}, k\in\{0\}\subset\mathbb{N}\}$. We obtained finite simple non-abelian groups $G$ with $1$ $\mathbb{P}^\infty$-$sn$ $G$.
Keywords: finite group, $\mathbb{P}^\infty$-subnormal subgroup.
Mots-clés : simple non-abelian group
@article{PFMT_2019_4_a13,
     author = {V. N. Tyutyanov and A. A. Trofimuk},
     title = {Chains in finite groups},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {70--73},
     publisher = {mathdoc},
     number = {4},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2019_4_a13/}
}
TY  - JOUR
AU  - V. N. Tyutyanov
AU  - A. A. Trofimuk
TI  - Chains in finite groups
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2019
SP  - 70
EP  - 73
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2019_4_a13/
LA  - ru
ID  - PFMT_2019_4_a13
ER  - 
%0 Journal Article
%A V. N. Tyutyanov
%A A. A. Trofimuk
%T Chains in finite groups
%J Problemy fiziki, matematiki i tehniki
%D 2019
%P 70-73
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2019_4_a13/
%G ru
%F PFMT_2019_4_a13
V. N. Tyutyanov; A. A. Trofimuk. Chains in finite groups. Problemy fiziki, matematiki i tehniki, no. 4 (2019), pp. 70-73. http://geodesic.mathdoc.fr/item/PFMT_2019_4_a13/