Sharp $L_p$-inequalities for derivatives of Blaschke products on the straight line
Problemy fiziki, matematiki i tehniki, no. 4 (2019), pp. 55-58.

Voir la notice de l'article provenant de la source Math-Net.Ru

Extremal problems for the derivatives of Blaschke products in the Lebesgue space on a straight line are solved. The supremum and infimum of the seminorms $||\!\bullet\!||_{L_p(\mathbb{R})}$, $0$, $p\ne 1/s$ from the derivatives of Blaschke products are obtained. Upper and lower inequalities for the higher derivatives of Blaschke products in the Lebesgue space $L_{1/s}(\mathbb{R})$ were obtained by the author earlier.
Keywords: rational functions, Blaschke products, Bernstein type inequality.
@article{PFMT_2019_4_a10,
     author = {T. S. Mardvilko},
     title = {Sharp $L_p$-inequalities for derivatives of {Blaschke} products on the straight line},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {55--58},
     publisher = {mathdoc},
     number = {4},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2019_4_a10/}
}
TY  - JOUR
AU  - T. S. Mardvilko
TI  - Sharp $L_p$-inequalities for derivatives of Blaschke products on the straight line
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2019
SP  - 55
EP  - 58
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2019_4_a10/
LA  - ru
ID  - PFMT_2019_4_a10
ER  - 
%0 Journal Article
%A T. S. Mardvilko
%T Sharp $L_p$-inequalities for derivatives of Blaschke products on the straight line
%J Problemy fiziki, matematiki i tehniki
%D 2019
%P 55-58
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2019_4_a10/
%G ru
%F PFMT_2019_4_a10
T. S. Mardvilko. Sharp $L_p$-inequalities for derivatives of Blaschke products on the straight line. Problemy fiziki, matematiki i tehniki, no. 4 (2019), pp. 55-58. http://geodesic.mathdoc.fr/item/PFMT_2019_4_a10/

[1] T.S. Mardvilko, “O znachenii postoyannykh v neravenstvakh tipa Bernshteina dlya vysshikh proizvodnykh ratsionalnykh funktsii na pryamoi”, Vesnik GrDU imya Ya. Kupaly. Seriya 2, 2009, no. 3 (27), 18–25

[2] V.N. Rusak, Ratsionalnye funktsii kak apparat priblizheniya, Izd-vo BGU, Minsk, 1979

[3] A.A. Pekarskii, “Approximation by rational functions with free poles”, East journal on approximations, 13:3 (2007), 227–319 | MR

[4] G.G. Lorenz, M.V. Golitschek, Y. Makovoz, Constructive Approximation. Advanced Problems, Springer-Verlag, Berlin, 1996 | MR

[5] P.P. Petrushev, V.A. Popov, Rational Approximations of Real Functions, Univ. Press, Cambridge, 1987 | MR

[6] A.A. Pekarskii, “Neravenstva tipa Bernshteina dlya proizvodnykh ratsionalnykh funktsii i obratnye teoremy ratsionalnoi approksimatsii”, Matem. sb., 124 (166):4 (8) (1984), 571–588 | Zbl

[7] T.S. Mardvilko, “Integralnye neravenstva dlya vysshikh proizvodnykh proizvedenii Blyashke dlya kruga”, Zhurn. Belorus. gos. un-ta. Matematika. Informatika, 2018, no. 1, 10–16

[8] T.S. Mardvilko, “On the value of the constants in the Bernstein type inequalities for higher derivatives of rational functions”, East journal on approximations, 15:2 (2009), 31–42 | MR