Rational mnemofunctions on circle
Problemy fiziki, matematiki i tehniki, no. 3 (2019), pp. 53-62
Cet article a éte moissonné depuis la source Math-Net.Ru
The method of embedding of the space of distributions on the circle into the algebra of mnemofunctions was considered in this paper. The subalgebra of mnemofunctions, generated by rational mnemofunctions, was detached. A complete description of this subalgebra was given. Its generators were singled out, the multiplication rule of distributions in this subalgebra was formulated explicitly.
Keywords:
mnemofunction, analytical representation of distribution, algebra of rational mnemofunctions.
@article{PFMT_2019_3_a8,
author = {A. B. Antonevich and T. G. Shahava},
title = {Rational mnemofunctions on circle},
journal = {Problemy fiziki, matematiki i tehniki},
pages = {53--62},
year = {2019},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/PFMT_2019_3_a8/}
}
A. B. Antonevich; T. G. Shahava. Rational mnemofunctions on circle. Problemy fiziki, matematiki i tehniki, no. 3 (2019), pp. 53-62. http://geodesic.mathdoc.fr/item/PFMT_2019_3_a8/
[1] A.B. Antonevich, T.G. Shagova, E.V. Shkadinskaya, “Algebra mnemofunktsii na okruzhnosti”, Problemy fiziki, matematiki i tekhniki, 2018, no. 3 (36), 55–62
[2] A.B. Antonevich, T.G. Shagova, “Vlozhenie raspredelenii v algebru mnemofunktsii na okruzhnosti”, Problemy fiziki, matematiki i tekhniki, 2018, no. 4 (37), 52–61
[3] G. Bremerman, Raspredeleniya, kompleksnye peremennye i preobrazovaniya Fure, Mir, M., 1965, 276 pp.
[4] P. Antosik, Ya. Mikusinskii, R. Sikorskii, Teoriya obobschennykh funktsii. Sekventsialnyi podkhod, Mir, M., 1976, 311 pp.