Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PFMT_2019_3_a2, author = {E. M. Ovsiyuk and A. D. Koral'kov}, title = {Relativistic particle with spin~$1$ in presence of coulomb field, quantum states with minimal angular momentum $j = 0$ in {Lobachevsky} an {Riemann} models}, journal = {Problemy fiziki, matematiki i tehniki}, pages = {19--25}, publisher = {mathdoc}, number = {3}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/PFMT_2019_3_a2/} }
TY - JOUR AU - E. M. Ovsiyuk AU - A. D. Koral'kov TI - Relativistic particle with spin~$1$ in presence of coulomb field, quantum states with minimal angular momentum $j = 0$ in Lobachevsky an Riemann models JO - Problemy fiziki, matematiki i tehniki PY - 2019 SP - 19 EP - 25 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PFMT_2019_3_a2/ LA - ru ID - PFMT_2019_3_a2 ER -
%0 Journal Article %A E. M. Ovsiyuk %A A. D. Koral'kov %T Relativistic particle with spin~$1$ in presence of coulomb field, quantum states with minimal angular momentum $j = 0$ in Lobachevsky an Riemann models %J Problemy fiziki, matematiki i tehniki %D 2019 %P 19-25 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/PFMT_2019_3_a2/ %G ru %F PFMT_2019_3_a2
E. M. Ovsiyuk; A. D. Koral'kov. Relativistic particle with spin~$1$ in presence of coulomb field, quantum states with minimal angular momentum $j = 0$ in Lobachevsky an Riemann models. Problemy fiziki, matematiki i tehniki, no. 3 (2019), pp. 19-25. http://geodesic.mathdoc.fr/item/PFMT_2019_3_a2/
[1] O.V. Veko, K.V. Kazmerchuk, E.M. Ovsiyuk, V.V. Kisel, A.M. Ishkhanyan, V.M. Red'kov, “Spin 1 particle in the magnetic monopole potential for Minkowski and Lobachevsky spaces: nonrelativistic approximation”, NPCS, 18:2 (2015), 243–258 | MR | Zbl
[2] O.V. Veko, K.V. Dashuk, V.V. Kisel, E.M. Ovsiyuk, V.M. Redkov, Kvantovaya mekhanika v kosmologicheskikh modelyakh de Sittera, Belorusskaya nauka, Minsk, 2016, 515 pp.
[3] E.M. Ovsiyuk, O.V. Veko, Ya.A. Voinova, A.D. Koralkov, V.V. Kisel, V.M. Redkov, “Ob opisanii svyazannykh sostoyanii dlya chastitsy so spinom 1 vo vneshnem kulonovskom pole”, Problemy fiziki, matematiki i tekhniki, 2018, no. 2 (35), 21–33
[4] E.M. Ovsiyuk, O.V. Veko, Ya.A. Voynova, A.D. Koral'kov, V.V. Kisel, V.M. Red'kov, “On describing bound states for a spin 1 particle in the external Coulomb field”, Balkan Society of Geometers Proceedings, 25 (2018), 59–78 | MR | Zbl
[5] V.M. Redkov, Tetradnyi formalizm, sfericheskaya simmetriya i bazis Shredingera, Belorusskaya nauka, Minsk, 2011, 339 pp.
[6] K. Heun, “Zur Theorie der Riemann'schen Functionen Zweiter Ordnung mit Verzweigungspunkten”, Math. Ann., 33 (1989), 161–179 | DOI | MR
[7] A. Ronveaux, Heun's differential equation, Oxford University Press, Oxford, 1995
[8] S. Yu. Slavyanov, W. Lay, Special functions. A unified theory based on singularities, Oxford University Press, Oxford, 2000 | MR | Zbl