Relativistic particle with spin~$1$ in presence of coulomb field, quantum states with minimal angular momentum $j = 0$ in Lobachevsky an Riemann models
Problemy fiziki, matematiki i tehniki, no. 3 (2019), pp. 19-25.

Voir la notice de l'article provenant de la source Math-Net.Ru

Previously, the nonrelativistic problems of a vector particle in the Coulomb field on the background of Lobachevsky and Riemann space models were studied, when a s modified Duffin–Kemmer equation was applied with additional spin-orbital interaction, which permitted to get three independent second order differential equations in nonrelativistic Pauli-like approximation and obtain three series of energies levels. However, the states with minimal value for quantum number of total angular momentum $j = 0$ were not considered, in the present paper these states are investigated. Conventional and modified Duffin–Kemmer equations provide us with solutions in hypergeometric and transcendental general Heun functions, even without transition to the nonrelativistic limit. These equations lead to slightly different energy spectra. Because the difference between two energy spectra at $j = 0$ turn out to be insignificant, we may expect similar property for states with larger values of $j$, even though solutions for conventional equation in Pauli approximation are not known.
Keywords: particle with spin $1$, Duffin–Kemmer equation, minimal values of total angular momentum, energy spectrum.
Mots-clés : Coulomb potential, Heun equation, exact solution
@article{PFMT_2019_3_a2,
     author = {E. M. Ovsiyuk and A. D. Koral'kov},
     title = {Relativistic particle with spin~$1$ in presence of coulomb field, quantum states with minimal angular momentum $j = 0$ in {Lobachevsky} an {Riemann} models},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {19--25},
     publisher = {mathdoc},
     number = {3},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2019_3_a2/}
}
TY  - JOUR
AU  - E. M. Ovsiyuk
AU  - A. D. Koral'kov
TI  - Relativistic particle with spin~$1$ in presence of coulomb field, quantum states with minimal angular momentum $j = 0$ in Lobachevsky an Riemann models
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2019
SP  - 19
EP  - 25
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2019_3_a2/
LA  - ru
ID  - PFMT_2019_3_a2
ER  - 
%0 Journal Article
%A E. M. Ovsiyuk
%A A. D. Koral'kov
%T Relativistic particle with spin~$1$ in presence of coulomb field, quantum states with minimal angular momentum $j = 0$ in Lobachevsky an Riemann models
%J Problemy fiziki, matematiki i tehniki
%D 2019
%P 19-25
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2019_3_a2/
%G ru
%F PFMT_2019_3_a2
E. M. Ovsiyuk; A. D. Koral'kov. Relativistic particle with spin~$1$ in presence of coulomb field, quantum states with minimal angular momentum $j = 0$ in Lobachevsky an Riemann models. Problemy fiziki, matematiki i tehniki, no. 3 (2019), pp. 19-25. http://geodesic.mathdoc.fr/item/PFMT_2019_3_a2/

[1] O.V. Veko, K.V. Kazmerchuk, E.M. Ovsiyuk, V.V. Kisel, A.M. Ishkhanyan, V.M. Red'kov, “Spin 1 particle in the magnetic monopole potential for Minkowski and Lobachevsky spaces: nonrelativistic approximation”, NPCS, 18:2 (2015), 243–258 | MR | Zbl

[2] O.V. Veko, K.V. Dashuk, V.V. Kisel, E.M. Ovsiyuk, V.M. Redkov, Kvantovaya mekhanika v kosmologicheskikh modelyakh de Sittera, Belorusskaya nauka, Minsk, 2016, 515 pp.

[3] E.M. Ovsiyuk, O.V. Veko, Ya.A. Voinova, A.D. Koralkov, V.V. Kisel, V.M. Redkov, “Ob opisanii svyazannykh sostoyanii dlya chastitsy so spinom 1 vo vneshnem kulonovskom pole”, Problemy fiziki, matematiki i tekhniki, 2018, no. 2 (35), 21–33

[4] E.M. Ovsiyuk, O.V. Veko, Ya.A. Voynova, A.D. Koral'kov, V.V. Kisel, V.M. Red'kov, “On describing bound states for a spin 1 particle in the external Coulomb field”, Balkan Society of Geometers Proceedings, 25 (2018), 59–78 | MR | Zbl

[5] V.M. Redkov, Tetradnyi formalizm, sfericheskaya simmetriya i bazis Shredingera, Belorusskaya nauka, Minsk, 2011, 339 pp.

[6] K. Heun, “Zur Theorie der Riemann'schen Functionen Zweiter Ordnung mit Verzweigungspunkten”, Math. Ann., 33 (1989), 161–179 | DOI | MR

[7] A. Ronveaux, Heun's differential equation, Oxford University Press, Oxford, 1995

[8] S. Yu. Slavyanov, W. Lay, Special functions. A unified theory based on singularities, Oxford University Press, Oxford, 2000 | MR | Zbl