On the problem of identifying a linear source for the third-order hyperbolic equation with integral condition
Problemy fiziki, matematiki i tehniki, no. 3 (2019), pp. 80-87.

Voir la notice de l'article provenant de la source Math-Net.Ru

The identification of a linear source for the third-order single equation that describes the propagation of longitudinal waves in a dispersive medium with an integral condition of the first kind is investigated. At first, the original problem reduces to an equivalent problem in a certain sense. Using the Fourier method, the equivalent problem is reduced to solving a system of integral equations. With the help of the method of compressed mappings, the existence and uniqueness of the solution of a system of integral equations, which is also the only solution to an equivalent problem, are proved. Using equivalence, it is possible to prove the existence and uniqueness of the classical solution of the original problem.
Keywords: inverse problem, third-order equations, Fourier method, classical solution.
@article{PFMT_2019_3_a13,
     author = {Ya. T. Mehraliev and U. S. Alizade},
     title = {On the problem of identifying a linear source for the third-order hyperbolic equation with integral condition},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {80--87},
     publisher = {mathdoc},
     number = {3},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2019_3_a13/}
}
TY  - JOUR
AU  - Ya. T. Mehraliev
AU  - U. S. Alizade
TI  - On the problem of identifying a linear source for the third-order hyperbolic equation with integral condition
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2019
SP  - 80
EP  - 87
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2019_3_a13/
LA  - ru
ID  - PFMT_2019_3_a13
ER  - 
%0 Journal Article
%A Ya. T. Mehraliev
%A U. S. Alizade
%T On the problem of identifying a linear source for the third-order hyperbolic equation with integral condition
%J Problemy fiziki, matematiki i tehniki
%D 2019
%P 80-87
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2019_3_a13/
%G ru
%F PFMT_2019_3_a13
Ya. T. Mehraliev; U. S. Alizade. On the problem of identifying a linear source for the third-order hyperbolic equation with integral condition. Problemy fiziki, matematiki i tehniki, no. 3 (2019), pp. 80-87. http://geodesic.mathdoc.fr/item/PFMT_2019_3_a13/

[1] A.N. Tikhonov, “O reshenii nekorrektno postavlennykh zadach i metode regulyarizatsii”, Doklady Akademii nauk SSSR, 151:3 (1963), 501–504 | Zbl

[2] M.M. Lavrentev, V.G. Romanov, S.T. Shishatskii, Nekorrektnye zadachi matematicheskoi fiziki i analiza, Nauka, M., 1980, 288 pp. | MR

[3] G. Eskin, “Inverse problems for general second order hyperbolic equations with time-dependent coefficients”, Bulletin of Mathematical Sciences, 7:2 (2017), 247–307 | DOI | MR | Zbl

[4] D.J. Jiang, Y.K. Liu, M. Yamamoto, “Inverse source problem for the hyperbolic equation with a time-dependent principal part”, Journal of Differential Equations, 262:1 (2017), 653–681 | DOI | MR | Zbl

[5] G. Nakamura, M. Watanabe, B. Kaltenbacher, “On the identification of a coefficient function in a nonlinear wave equation”, Inverse Problems, 25:3 (2009), 035007 | DOI | MR | Zbl

[6] P.N. Vabishchevich, V.I. Vasil'ev, Numerical solving the identification problem for the lower coefficient of parabolic equation, 22 April 2013, arXiv: 1304.5923v1 [cs.NA]

[7] V.T. Borukhov, P.N. Vabischevich, “Chislennoe reshenie obratnoi zadachi vosstanovleniya istochnika v parabolicheskom uravnenii”, Matematicheskoe modelirovanie, 19:11 (1988), 92–100

[8] Ya.T. Megraliev, “O zadache identifikatsii lineinogo istochnika dlya ellipticheskogo uravneniya vtorogo poryadka s integralnym usloviem”, Tr. In-ta matem, 21:2 (2013), 128–141

[9] V.V. Varlamov, “O fundamentalnom reshenii odnogo uravneniya, opisyvayuschego rasprostranenie prodolnykh voln v dispergiruyuschei srede”, Zhurnal vychislitelnoi matematiki i matematicheskoi fiziki, 27:4 (1987), 629–633 | MR | Zbl

[10] V.V. Varlamov, “Ob odnoi nachalnokraevoi zadache dlya giperbolicheskogo uravneniya tretego poryadka”, Differentsialnye uravneniya, 26:8 (1990), 1455–1457 | MR | Zbl

[11] V.V. Varlamov, “Asimptoticheskoe povedenie energii dlya integrodifferentsialnogo uravneniya, opisyvayuschego akusticheskie volny v relaksiruyuschei srede v srede s dispersiei”, Dokl. AN SSSR, 317:5 (1991), 792–797 | Zbl

[12] Ya.T. Megraliev, “Obratnaya kraevaya zadacha dlya differentsialnogo uravneniya s chastnymi proizvodnymi chetvertogo poryadka s integralnym usloviem”, Vestnik YuUrGU. Seriya «Matematika. Mekhanika. Fizika», 2011, no. 5, 51–56

[13] Ya.T. Megraliev, “Ob odnoi obratnoi kraevoi zadache dlya giperbolicheskogo uravneniya vtorogo poryadka s integralnym usloviem pervogo roda”, Vestnik Bryanskogo gosudarstvennogo universiteta, 2011, no. 4, 22–28

[14] K.I. Khudaverdiev, A.A. Veliev, Issledovanie odnomernoi smeshannoi zadachi dlya odnogo klassa psevdogiperbolicheskikh uravnenii tretego poryadka s nelineinoi operatornoi pravoi chastyu, Chashyogly, B., 2010, 162 pp.