The given motions realization of dynamic systems by bounded optimal controls of linear-quadratic problems
Problemy fiziki, matematiki i tehniki, no. 3 (2019), pp. 74-79.

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of the given motions realization of dynamic systems in the bounded control class is considered. The regulator operation algorithm is constructing with optimal control methods. According to this algorithm, in real-time, the current values of limited feedbacks are calculated (generates), with the help of which the closed-loop system stably carries out a given movement. To solve the problem the feedback optimal control realization of linear-quadratic problem with restrictions is suggested. The results are illustrated on the problem of dynamic systems synthesis, realizing limited cycles.
Keywords: dynamic system, given motions realization problem, bounded stabilizing feedback, auxiliary optimal control problem, regulator.
@article{PFMT_2019_3_a12,
     author = {A. V. Lubochkin},
     title = {The given motions realization of dynamic systems by bounded optimal controls of linear-quadratic problems},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {74--79},
     publisher = {mathdoc},
     number = {3},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2019_3_a12/}
}
TY  - JOUR
AU  - A. V. Lubochkin
TI  - The given motions realization of dynamic systems by bounded optimal controls of linear-quadratic problems
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2019
SP  - 74
EP  - 79
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2019_3_a12/
LA  - ru
ID  - PFMT_2019_3_a12
ER  - 
%0 Journal Article
%A A. V. Lubochkin
%T The given motions realization of dynamic systems by bounded optimal controls of linear-quadratic problems
%J Problemy fiziki, matematiki i tehniki
%D 2019
%P 74-79
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2019_3_a12/
%G ru
%F PFMT_2019_3_a12
A. V. Lubochkin. The given motions realization of dynamic systems by bounded optimal controls of linear-quadratic problems. Problemy fiziki, matematiki i tehniki, no. 3 (2019), pp. 74-79. http://geodesic.mathdoc.fr/item/PFMT_2019_3_a12/

[1] M.A. Aizerman, Lektsii po teorii avtomaticheskogo regulirovaniya, 2-e izd., dop. i pererab., Fizmatgiz, M., 1958, 520 pp.

[2] E.A. Barbashin, Vvedenie v teoriyu ustoichivosti, Nauka, M., 1967, 224 pp. | MR

[3] Kh. Kvakernaak, R. Sivan, Lineinye optimalnye sistemy upravleniya, Mir, M., 1977, 656 pp.

[4] I.G. Malkin, Teoriya ustoichivosti dvizheniya, 2-e izd., ispr., Nauka, M., 1966, 530 pp. | MR

[5] L.S. Pontryagin i dr., Matematicheskaya teoriya optimalnykh protsessov, Nauka, M., 1969, 384 pp.

[6] R. Gabasov, F.M. Kirillova, O.I. Kostyukova, “Optimizatsiya lineinoi sistemy upravleniya v rezhime realnogo vremeni”, Izvestiya RAN. Tekhnicheskaya kibernetika, 1992, no. 4, 3–19 | Zbl

[7] R. Gabasov, A.V. Lubochkin, “Sintez regulyatora dlya odnoi lineino-kvadratichnoi zadachi optimalnogo upravleniya”, Avtomatika i telemekhanika, 1997, no. 9, 3–14 | Zbl

[8] F.M. Kirillova, A.V. Lubochkin, “Sintez optimalnogo upravleniya v lineino-kvadratichnoi zadache s ogranicheniyami”, Doklady RAN, 356:6 (1997), 736–739 | MR | Zbl

[9] A.V. Lubochkin, “Diskretnaya realizatsiya pozitsionnogo resheniya v lineino-kvadratichnoi zadache s ogranicheniyami”, Izvestiya Gomelskogo gosudarstvennogo universiteta im. F. Skoriny, 2003, no. 3 (18), 32–37

[10] R. Gabasov, F.M. Kirillova, O.I. Kostyukova, “K metodam stabilizatsii dinamicheskikh sistem”, Izvestiya RAN. Tekhnicheskaya kibernetika, 1994, no. 3, 67–77 | Zbl

[11] R. Gabasov, A.V. Lubochkin, “Stabilizatsiya lineinykh dinamicheskikh sistem optimalnymi upravleniyami lineino-kvadratichnykh zadach”, Prikladnaya matematika i mekhanika, 62:4 (1998), 556–565 | MR

[12] A.V. Lubochkin, “Stabilizatsiya lineinykh dinamicheskikh sistem s pomoschyu pozitsionnykh reshenii lineino-kvadratichnykh zadach s ogranicheniyami”, Izvestiya Gomelskogo gosudarstvennogo universiteta im. F. Skoriny, 2006, no. 4 (37), 39–42

[13] A.V. Lubochkin, “Reshenie klassicheskoi zadachi regulirovaniya optimalnymi upravleniyami lineino-kvadratichnykh zadach”, Problemy fiziki, matematiki i tekhniki, 2010, no. 2 (3), 40–46 | Zbl

[14] R. Gabasov, F.M. Kirillova, E.A. Ruzhitskaya, “Sintez obratnykh svyazei dlya sistem, osuschestvlyayuschikh zadannye dvizheniya”, Avtomatika i telemekhanika, 2003, no. 8, 26–39 | Zbl

[15] A.V. Lubochkin, “Postroenie optimalnogo (po srednekvadratichnoi intensivnosti upravleniya) perekhodnogo protsessa v lineinoi sisteme”: R. Gabasov i dr., Konstruktivnye metody optimizatsii, v. 4, Vypuklye zadachi, Universitetskoe, Mn., 1987, 218–222

[16] V.M. Raketskii, “Reshenie obschei zadachi vypuklogo kvadratichnogo programmirovaniya dvoistvennym metodom”, Programmnoe obespechenie EVM, 55, In-t matematiki AN BSSR, Mn., 1985, 124–129