Injectors and Fischer subgroups of finite $\pi$-soluble groups
Problemy fiziki, matematiki i tehniki, no. 2 (2019), pp. 70-75.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\mathscr{F}$ be a Fitting set of a group $G$ and $L\leq G$. Then $\mathscr{F}$ is called a Fischer set of $G$, if $L\in\mathscr{F}$, $K\unlhd L$ and $H/K$ is a $p$-subgroup of $L/K$ for some prime $p$, then $H\in\mathscr{F}$. A subgroup $F$ of a group $G$ is said to be Fischer $\mathscr{F}$-subgroup of $G$ if the following conditions are hold: (1) $F\in\mathscr{F}$; (2) if $F\leq H\leq G$, then $H_{\mathscr{F}}\leq F$. Let $\pi$ be some nonempty set of prime numbers. A Fitting set $\mathscr{F}$ of a group $G$ is said to be $\pi$-saturated if $\mathscr{F}=\{H\leq G: H/H_{\mathscr{F}}\in\mathfrak{E}_{\pi'}\}$, where $\mathfrak{E}_{\pi'}$ is the class of all $\pi'$-groups. In this paper it is proved that if $\mathscr{F}$ is a $\pi$-saturated Fischer set of a $\pi$-soluble group $G$, then a subgroup $V$ of a group $G$ is $\mathscr{F}$-injector of $G$ if and only if $V$ is a Fischer $\mathscr{F}$-subgroup of $G$, which contains Hall $\pi'$-subgroup of $G$.
Keywords: Fitting set, Fischer set, $\mathscr{F}$-injector, Fischer $\mathscr{F}$-subgroup of $G$.
@article{PFMT_2019_2_a9,
     author = {T. B. Karaulova},
     title = {Injectors and {Fischer} subgroups of finite $\pi$-soluble groups},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {70--75},
     publisher = {mathdoc},
     number = {2},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2019_2_a9/}
}
TY  - JOUR
AU  - T. B. Karaulova
TI  - Injectors and Fischer subgroups of finite $\pi$-soluble groups
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2019
SP  - 70
EP  - 75
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2019_2_a9/
LA  - ru
ID  - PFMT_2019_2_a9
ER  - 
%0 Journal Article
%A T. B. Karaulova
%T Injectors and Fischer subgroups of finite $\pi$-soluble groups
%J Problemy fiziki, matematiki i tehniki
%D 2019
%P 70-75
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2019_2_a9/
%G ru
%F PFMT_2019_2_a9
T. B. Karaulova. Injectors and Fischer subgroups of finite $\pi$-soluble groups. Problemy fiziki, matematiki i tehniki, no. 2 (2019), pp. 70-75. http://geodesic.mathdoc.fr/item/PFMT_2019_2_a9/

[1] K. Doerk, T. Hawkes, Finite Soluble Groups, Walter de Gruyter, Berlin–New-York, 1992, 891 pp. | MR

[2] W. Gaschutz, “Zur Theorie der endlichen auflosbaren Gruppen”, Math. Z., 80 (1963), 300–305 | DOI | MR | Zbl

[3] B. Fischer, Klassen konjugierter Untergruppen in endlichen auflosbaren Gruppen, Habilitationsschrift, Universitat Frankfurt (M), 1966 | Zbl

[4] B. Fischer, W. Gaschutz, B. Hartley, “Injektoren endlicher auflosbarer Gruppen”, Math. Z., 102:5 (1967), 337–339 | DOI | MR | Zbl

[5] R. Dark, “Some examples in the theory of injectors of finite soluble groups”, Math. Z., 127 (1972), 145–156 | DOI | MR | Zbl

[6] B. Hartley, “On Fischer's dualization of formation theory”, Proc. London Math. Soc., 3:2 (1969), 193–207 | DOI | MR | Zbl

[7] L.A. Shemetkov, “O podgruppakh $\pi$-razreshimykh grupp”, Konechnye gruppy, 1975, 207–212

[8] W. Anderson, “Injectors in finite soluble groups”, J. Algebra, 36 (1975), 333–338 | DOI | MR | Zbl

[9] N. Yang, W. Guo, N.T. Vorob'ev, “On $\mathscr{F}$-injectors of Fitting set of a finite group”, Comm. Algebra, 46:1 (2018), 217–229 | DOI | MR | Zbl

[10] S.N. Vorobev, “In'ektory i podgruppy Fishera konechnykh grupp”, Vesnik Vitsebskaga dzyarzhaŭnaga ŭniversiteta imya P.M. Masherava, 77:5 (2013), 36–42

[11] S.A. Chunikhin, Podgruppy konechnykh grupp, Nauka i tekhnika, Minsk, 1964

[12] M.G. Semenov, “Formula in'ektora konechnoi $\pi$-razreshimoi gruppy”, Problemy fiziki, matematiki i tekhniki, 2014, no. 4(21), 77–88

[13] T.B. Karaulova, “Lokalnye mnozhestva Fittinga i in'ektory konechnoi gruppy”, Zhurnal Belorusskogo gosudarstvennogo universiteta. Matematika. Informatika, 2018, no. 3, 29–38