On the intersections of generalized projectors with the products of normal subgroups of finite groups
Problemy fiziki, matematiki i tehniki, no. 2 (2019), pp. 61-65.

Voir la notice de l'article provenant de la source Math-Net.Ru

The factorization properties of the $\mathfrak{F}^\omega$-projector introduced by V. A. Vedernikov and M. M. Sorokina in 2016 ($\omega$ is a non-empty set of primes and $\mathfrak{F}$ is a non-empty class of groups) were investigated. Necessary and sufficient conditions are found for the equality $N_1N_2 \cap H = (N_1 \cap H)(N_2 \cap H)$ for any $\mathfrak{F}^\omega$-projector $H$ and any normal $\omega$-subgroups $N_1$ and $N_2$ of $G$, where $G$ is an extension of the $\omega$-group with the help of an $\mathfrak{F}$-group.
Keywords: finite group, $\mathfrak{F}^\omega$-projector, $\omega$-saturated formation, $\omega$-primitive closed homomorph.
@article{PFMT_2019_2_a7,
     author = {T. I. Vasilyeva},
     title = {On the intersections of generalized projectors with the products of normal subgroups of finite groups},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {61--65},
     publisher = {mathdoc},
     number = {2},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2019_2_a7/}
}
TY  - JOUR
AU  - T. I. Vasilyeva
TI  - On the intersections of generalized projectors with the products of normal subgroups of finite groups
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2019
SP  - 61
EP  - 65
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2019_2_a7/
LA  - ru
ID  - PFMT_2019_2_a7
ER  - 
%0 Journal Article
%A T. I. Vasilyeva
%T On the intersections of generalized projectors with the products of normal subgroups of finite groups
%J Problemy fiziki, matematiki i tehniki
%D 2019
%P 61-65
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2019_2_a7/
%G ru
%F PFMT_2019_2_a7
T. I. Vasilyeva. On the intersections of generalized projectors with the products of normal subgroups of finite groups. Problemy fiziki, matematiki i tehniki, no. 2 (2019), pp. 61-65. http://geodesic.mathdoc.fr/item/PFMT_2019_2_a7/

[1] W. Gaschütz, “Zur Theorie der endlichen auflosbaren Gruppen”, Math. Z., 80:4 (1963), 300–305 | MR | Zbl

[2] W. Gaschütz, Lectures on subgroups of Sylow type in finite soluble groups, Notes on pure mathematics, 11, Australian National University, Canberra, 1979, 100 pp. | MR

[3] L.A. Shemetkov, Formatsii konechnykh grupp, Nauka, M., 1978, 272 pp.

[4] H. Schunck, “$\mathfrak{H}$-Untergruppen in endlichen auflösbaren Gruppen”, Math. Z., 97:4 (1967), 326–330 | DOI | MR | Zbl

[5] R. Erickson, “Projectors of finite groups”, Commun. Algebra, 10:18 (1982), 1919–1938 | DOI | MR | Zbl

[6] V.A. Vedernikov, M.M. Sorokina, “$\mathfrak{F}$-proektory i $\mathfrak{F}$-pokryvayuschie podgruppy konechnykh grupp”, Sib. matem. zhurn., 57:6 (2016), 957–968 | Zbl

[7] B. Huppert, “Zur Theorie der Formationen”, Arch. Math., 19:6 (1969), 561–574 | DOI | MR | Zbl

[8] K. Doerk, T. Hawkes, Finite soluble groups, Walter de Gruyter, Berlin–New-York, 1992, 898 pp. | MR

[9] P. Förster, “Subnormal subgroups and formation projectors”, J. Austral. Math. Soc. Series A, 42 (1987), 31–47 | DOI | MR | Zbl

[10] V.S. Monakhov, Vvedenie v teoriyu konechnykh grupp i ikh klassov, Vysheishaya shkola, Minsk, 2006, 206 pp.

[11] A.N. Skiba, L.A. Shemetkov, “Kratno $\omega$-lokalnye formatsii i klassy Fittinga konechnykh grupp”, Matem. tr., 2:2 (1999), 114–147 | Zbl

[12] T.I. Vasileva, A.I. Prokopenko, “Proektory i reshetki normalnykh podgrupp konechnykh grupp”, Dokl. Nats. akad. nauk Belarusi, 48:4 (2004), 34–37

[13] T.I. Vasileva, “Obobschennye proektory konechnykh grupp”, Vserossiiskaya konferentsiya po matematike, posvyaschennaya 140-letiyu Tomskogo gosudarstvennogo universiteta i 70-letiyu mekhaniko-matematicheskogo fakulteta, sbornik tezisov (Tomsk, 2–4 oktyabrya, 2018 g.), Izdatelskii dom Tomskogo gosudarstvennogo universiteta, Tomsk, 2018, 10–11