Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PFMT_2019_2_a6, author = {V. V. Beniash-Kryvets and Y. A. Yushkevich}, title = {On the {Tits} alternative for generalized tetraedron groups of type $(2, 2, N, 2, 2, 2)$}, journal = {Problemy fiziki, matematiki i tehniki}, pages = {54--60}, publisher = {mathdoc}, number = {2}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/PFMT_2019_2_a6/} }
TY - JOUR AU - V. V. Beniash-Kryvets AU - Y. A. Yushkevich TI - On the Tits alternative for generalized tetraedron groups of type $(2, 2, N, 2, 2, 2)$ JO - Problemy fiziki, matematiki i tehniki PY - 2019 SP - 54 EP - 60 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PFMT_2019_2_a6/ LA - ru ID - PFMT_2019_2_a6 ER -
%0 Journal Article %A V. V. Beniash-Kryvets %A Y. A. Yushkevich %T On the Tits alternative for generalized tetraedron groups of type $(2, 2, N, 2, 2, 2)$ %J Problemy fiziki, matematiki i tehniki %D 2019 %P 54-60 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/PFMT_2019_2_a6/ %G ru %F PFMT_2019_2_a6
V. V. Beniash-Kryvets; Y. A. Yushkevich. On the Tits alternative for generalized tetraedron groups of type $(2, 2, N, 2, 2, 2)$. Problemy fiziki, matematiki i tehniki, no. 2 (2019), pp. 54-60. http://geodesic.mathdoc.fr/item/PFMT_2019_2_a6/
[1] E.B. Vinberg, “Gruppy, zadavaemye periodicheskimi poparnymi sootnosheniyami”, Matematicheskii sbornik, 188:9 (1997), 3–12 | DOI
[2] B. Fine, G. Rosenberger, Algebraic generalizations of discrete groups. A path to combinatorial group theory through one-relator products, Marcel Dekker, New York, 1999, 315 pp. | MR | Zbl
[3] J. Howie, N. Kopteva, “The Tits alternative for generalized tetrahedron groups”, Journal of Group Theory, 9 (2006), 173–189 | DOI | MR | Zbl
[4] B. Fine, A. Hulpke, V. große Rebel, G. Rosenberger, “The Tits alternative for spherical generalized tetrahedron groups”, Algebra Colloquium, 15:4 (2008), 541–554 | DOI | MR | Zbl
[5] V. große Rebel, M. Hahn, G. Rosenberger, “The Tits alternative for Tsaranov's generalized tetrahedron groups”, Groups-Complexity-Cryptology, 1:2 (2009), 207–216 | MR | Zbl
[6] B. Fine, A. Hulpke, V. große Rebel, G. Rosenberger, S. Schauerte, “The Tits alternative for short generalized tetrahedron groups”, Scientia. Series A: Mathematical Sciences, 21 (2011), 1–15 | MR | Zbl
[7] V.V. Benyash-Krivets, S. Khua, “O svobodnykh podgruppakh v nekotorykh obobschennykh tetraedralnykh gruppakh”, Vestnik Belorusskogo gosudarstvennogo universiteta, ser. 1, 2008, no. 2, 79–85
[8] V.V. Benyash-Krivets, Ya. A. Zhukovets, “Alternativa Titsa dlya obobschennykh tetraedralnykh grupp spetsialnogo tipa”, Vestnik Belorusskogo gosudarstvennogo universiteta, ser. 1, 2011, no. 1, 46–53
[9] V.V. Benyash-Krivets, Ya.A. Zhukovets, “O svobodnykh podgruppakh v obobschennykh tetraedralnykh gruppakh tipa (3,8,2,2,2,2)”, Vesnik Vitsebskaga dzyarzhaŭnaga ŭniversiteta, 2011, no. 6 (66), 12–15
[10] V.V. Benyash-Krivets, Ya.A. Zhukovets, “O svobodnykh podgruppakh v obobschennykh tetraedralnykh gruppakh tipa (4,6,2,2,2,2)”, Vestnik Belorusskogo gosudarstvennogo universiteta, ser. 1, 2012, no. 1, 62–68
[11] S. Katok, Fuchsian groups, University of Chicago Press, Chicago, IL, 1992, 175 pp. | MR | Zbl
[12] R. Horowitz, “Characters of free groups represented in the two-dimensional special linear group”, Communications on Pure and Applied Mathematics, 25 (1972), 635–649 | DOI | MR | Zbl
[13] C. Traina, “Trace polynomial for two generator subgroups of $SL(2,\mathbb{C})$”, Proceedings of the American Mathematical Society, 79 (1980), 369–372 | MR
[14] V.V. Benyash-Krivets, “O svobodnykh podgruppakh nekotorykh obobschennykh treugolnykh grupp”, Doklady NAN Belarusi, 47:3 (2003), 14–17