On the Tits alternative for generalized tetraedron groups of type $(2, 2, N, 2, 2, 2)$
Problemy fiziki, matematiki i tehniki, no. 2 (2019), pp. 54-60.

Voir la notice de l'article provenant de la source Math-Net.Ru

Generalized tetraedron groups have a presentation of the form $$ \Gamma=\left\langle x_1,x_2,x_3\mid x_1^{k_1}=x_2^{k_2}=x_3^{k_3}=R_{12}(x_1,x_2)^l=R_{23}(x_2,x_3)^m=R_{13}(x_1,x_3)^n=1\right\rangle. $$ There exists a Rosenberger’s conjecture that the Tits alternative holds for generalized tetrahedron groups. This conjecture is open for groups of the form $\left\langle x_1,x_2,x_3\mid x_1^{k_1}=x_2^{k_2}=x_3^{k_3}=R_{12}(x_1,x_2)^2=(x_1^\alpha x_3^\beta)^2=(x_2^\gamma x_3^\delta)^2=1\right\rangle$, $\frac1{k_1}+\frac1{k_2}+\frac1{k_3}\geqslant\frac12$. In this paper, a number of sufficient conditions are found for fulfillment the Tits alternative for groups $$ \Gamma=\left\langle a,b,c\mid a^2=b^n=c^2=R(a,b)^2=(b^\alpha c)^2=(ac)^2=1\right\rangle. $$
Keywords: generalized tetraedron group, free group, almost solvavle group.
Mots-clés : Tits alternative
@article{PFMT_2019_2_a6,
     author = {V. V. Beniash-Kryvets and Y. A. Yushkevich},
     title = {On the {Tits} alternative for generalized tetraedron groups of type $(2, 2, N, 2, 2, 2)$},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {54--60},
     publisher = {mathdoc},
     number = {2},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2019_2_a6/}
}
TY  - JOUR
AU  - V. V. Beniash-Kryvets
AU  - Y. A. Yushkevich
TI  - On the Tits alternative for generalized tetraedron groups of type $(2, 2, N, 2, 2, 2)$
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2019
SP  - 54
EP  - 60
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2019_2_a6/
LA  - ru
ID  - PFMT_2019_2_a6
ER  - 
%0 Journal Article
%A V. V. Beniash-Kryvets
%A Y. A. Yushkevich
%T On the Tits alternative for generalized tetraedron groups of type $(2, 2, N, 2, 2, 2)$
%J Problemy fiziki, matematiki i tehniki
%D 2019
%P 54-60
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2019_2_a6/
%G ru
%F PFMT_2019_2_a6
V. V. Beniash-Kryvets; Y. A. Yushkevich. On the Tits alternative for generalized tetraedron groups of type $(2, 2, N, 2, 2, 2)$. Problemy fiziki, matematiki i tehniki, no. 2 (2019), pp. 54-60. http://geodesic.mathdoc.fr/item/PFMT_2019_2_a6/

[1] E.B. Vinberg, “Gruppy, zadavaemye periodicheskimi poparnymi sootnosheniyami”, Matematicheskii sbornik, 188:9 (1997), 3–12 | DOI

[2] B. Fine, G. Rosenberger, Algebraic generalizations of discrete groups. A path to combinatorial group theory through one-relator products, Marcel Dekker, New York, 1999, 315 pp. | MR | Zbl

[3] J. Howie, N. Kopteva, “The Tits alternative for generalized tetrahedron groups”, Journal of Group Theory, 9 (2006), 173–189 | DOI | MR | Zbl

[4] B. Fine, A. Hulpke, V. große Rebel, G. Rosenberger, “The Tits alternative for spherical generalized tetrahedron groups”, Algebra Colloquium, 15:4 (2008), 541–554 | DOI | MR | Zbl

[5] V. große Rebel, M. Hahn, G. Rosenberger, “The Tits alternative for Tsaranov's generalized tetrahedron groups”, Groups-Complexity-Cryptology, 1:2 (2009), 207–216 | MR | Zbl

[6] B. Fine, A. Hulpke, V. große Rebel, G. Rosenberger, S. Schauerte, “The Tits alternative for short generalized tetrahedron groups”, Scientia. Series A: Mathematical Sciences, 21 (2011), 1–15 | MR | Zbl

[7] V.V. Benyash-Krivets, S. Khua, “O svobodnykh podgruppakh v nekotorykh obobschennykh tetraedralnykh gruppakh”, Vestnik Belorusskogo gosudarstvennogo universiteta, ser. 1, 2008, no. 2, 79–85

[8] V.V. Benyash-Krivets, Ya. A. Zhukovets, “Alternativa Titsa dlya obobschennykh tetraedralnykh grupp spetsialnogo tipa”, Vestnik Belorusskogo gosudarstvennogo universiteta, ser. 1, 2011, no. 1, 46–53

[9] V.V. Benyash-Krivets, Ya.A. Zhukovets, “O svobodnykh podgruppakh v obobschennykh tetraedralnykh gruppakh tipa (3,8,2,2,2,2)”, Vesnik Vitsebskaga dzyarzhaŭnaga ŭniversiteta, 2011, no. 6 (66), 12–15

[10] V.V. Benyash-Krivets, Ya.A. Zhukovets, “O svobodnykh podgruppakh v obobschennykh tetraedralnykh gruppakh tipa (4,6,2,2,2,2)”, Vestnik Belorusskogo gosudarstvennogo universiteta, ser. 1, 2012, no. 1, 62–68

[11] S. Katok, Fuchsian groups, University of Chicago Press, Chicago, IL, 1992, 175 pp. | MR | Zbl

[12] R. Horowitz, “Characters of free groups represented in the two-dimensional special linear group”, Communications on Pure and Applied Mathematics, 25 (1972), 635–649 | DOI | MR | Zbl

[13] C. Traina, “Trace polynomial for two generator subgroups of $SL(2,\mathbb{C})$”, Proceedings of the American Mathematical Society, 79 (1980), 369–372 | MR

[14] V.V. Benyash-Krivets, “O svobodnykh podgruppakh nekotorykh obobschennykh treugolnykh grupp”, Doklady NAN Belarusi, 47:3 (2003), 14–17