On the existence and uniqueness of type II Hermite–Padé polynomials
Problemy fiziki, matematiki i tehniki, no. 2 (2019), pp. 92-96
Cet article a éte moissonné depuis la source Math-Net.Ru
New concepts are introduced in the work. They are quite normal index and a quite perfect system of functions. Using these concepts, a uniqueness criterion was formulated and proved, explicit determinant representations of type II Hermite–Padé polynomials for an arbitrary system of power series were obtained. The results obtained complement and generalize the well-known result in the theory of Hermite–Padé approximations.
Mots-clés :
Hermite–Padé polynomials, Hadamard determinant
Keywords: normal index, perfect system, Hankel determinant.
Keywords: normal index, perfect system, Hankel determinant.
@article{PFMT_2019_2_a13,
author = {A. P. Starovoitov and N. V. Ryabchenko and D. A. Volkov},
title = {On the existence and uniqueness of type {II} {Hermite{\textendash}Pad\'e} polynomials},
journal = {Problemy fiziki, matematiki i tehniki},
pages = {92--96},
year = {2019},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/PFMT_2019_2_a13/}
}
TY - JOUR AU - A. P. Starovoitov AU - N. V. Ryabchenko AU - D. A. Volkov TI - On the existence and uniqueness of type II Hermite–Padé polynomials JO - Problemy fiziki, matematiki i tehniki PY - 2019 SP - 92 EP - 96 IS - 2 UR - http://geodesic.mathdoc.fr/item/PFMT_2019_2_a13/ LA - ru ID - PFMT_2019_2_a13 ER -
A. P. Starovoitov; N. V. Ryabchenko; D. A. Volkov. On the existence and uniqueness of type II Hermite–Padé polynomials. Problemy fiziki, matematiki i tehniki, no. 2 (2019), pp. 92-96. http://geodesic.mathdoc.fr/item/PFMT_2019_2_a13/
[1] E.M. Nikishin, V.N. Sorokin, Ratsionalnye approksimatsii i ortogonalnost, Nauka, M., 1988
[2] Dzh. Beiker ml., P. Greivs-Morris, Approksimatsii Pade, v. 1, Osnovy teorii, Mir, M., 1986; т. 2, Обобщения и приложения