On the existence and uniqueness of type II Hermite–Padé polynomials
Problemy fiziki, matematiki i tehniki, no. 2 (2019), pp. 92-96 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

New concepts are introduced in the work. They are quite normal index and a quite perfect system of functions. Using these concepts, a uniqueness criterion was formulated and proved, explicit determinant representations of type II Hermite–Padé polynomials for an arbitrary system of power series were obtained. The results obtained complement and generalize the well-known result in the theory of Hermite–Padé approximations.
Mots-clés : Hermite–Padé polynomials, Hadamard determinant
Keywords: normal index, perfect system, Hankel determinant.
@article{PFMT_2019_2_a13,
     author = {A. P. Starovoitov and N. V. Ryabchenko and D. A. Volkov},
     title = {On the existence and uniqueness of type {II} {Hermite{\textendash}Pad\'e} polynomials},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {92--96},
     year = {2019},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2019_2_a13/}
}
TY  - JOUR
AU  - A. P. Starovoitov
AU  - N. V. Ryabchenko
AU  - D. A. Volkov
TI  - On the existence and uniqueness of type II Hermite–Padé polynomials
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2019
SP  - 92
EP  - 96
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/PFMT_2019_2_a13/
LA  - ru
ID  - PFMT_2019_2_a13
ER  - 
%0 Journal Article
%A A. P. Starovoitov
%A N. V. Ryabchenko
%A D. A. Volkov
%T On the existence and uniqueness of type II Hermite–Padé polynomials
%J Problemy fiziki, matematiki i tehniki
%D 2019
%P 92-96
%N 2
%U http://geodesic.mathdoc.fr/item/PFMT_2019_2_a13/
%G ru
%F PFMT_2019_2_a13
A. P. Starovoitov; N. V. Ryabchenko; D. A. Volkov. On the existence and uniqueness of type II Hermite–Padé polynomials. Problemy fiziki, matematiki i tehniki, no. 2 (2019), pp. 92-96. http://geodesic.mathdoc.fr/item/PFMT_2019_2_a13/

[1] E.M. Nikishin, V.N. Sorokin, Ratsionalnye approksimatsii i ortogonalnost, Nauka, M., 1988

[2] Dzh. Beiker ml., P. Greivs-Morris, Approksimatsii Pade, v. 1, Osnovy teorii, Mir, M., 1986; т. 2, Обобщения и приложения