Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PFMT_2019_1_a9, author = {A. R. Mirotin and I. S. Kovaliova}, title = {The {Markov--Stieltjes} transform of measures and discrete time systems}, journal = {Problemy fiziki, matematiki i tehniki}, pages = {56--60}, publisher = {mathdoc}, number = {1}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/PFMT_2019_1_a9/} }
A. R. Mirotin; I. S. Kovaliova. The Markov--Stieltjes transform of measures and discrete time systems. Problemy fiziki, matematiki i tehniki, no. 1 (2019), pp. 56-60. http://geodesic.mathdoc.fr/item/PFMT_2019_1_a9/
[1] I.S. Kovaleva, A.R. Mirotin, “Teorema o svertke dlya preobrazovaniya Markova–Stiltesa”, Problemy fiziki, matematiki i tekhniki, 2013, no. 3 (16), 66–70
[2] A.R. Mirotin, I.S. Kovalyova, “The Markov–Stieltjes transform on Hardy and Lebesgue spaces”, Integral Transforms and Special Functions, 27:12 (2016), 995–1007 | DOI | MR | Zbl
[3] A.R. Mirotin, I.S. Kovalyova, “Corrigendum to our paper “The Markov–Stieltjes transform on Hardy and Lebesgue spaces””, Integral Transforms and Special Functions, 28:5 (2017), 421–422 | DOI | MR | Zbl
[4] I.S. Kovaleva, A.R. Mirotin, “Obobschennyi operator Markova–Stiltesa v prostranstvakh Khardi i Lebega”, Trudy instituta matematiki, 25:1 (2017), 39–50 | Zbl
[5] A.R. Mirotin, Garmonicheskii analiz na abelevykh polugruppakh, GGU im. F. Skoriny, Gomel, 2008, 207 pp.
[6] M.G. Krein, A.A. Nudelman, Problema momentov Markova i ekstremalnye zadachi, Nauka. Glavnaya redaktsiya fiz.- mat. literatury, M., 1973, 552 pp. | MR
[7] N.K. Nikolski, Operators, Functions and System, translated by A. Hartman, v. 1, Mathematical Surveys and Monographs, 92, Hardy, Hankel, and Toeplitz, American Mathematical Society, Providence, Rhode Island, 2002, 461 pp. | MR
[8] U.M. Sibert, Tsepi i signaly sistemy, v 2 chastyakh, per. s angl., v. 2, ed. I.S. Ryzhak, Mir, M., 1988
[9] N.S. Vyacheslavov, E.P. Mochalina, “Ratsionalnye priblizheniya funktsii tipa Markova–Stiltesa v prostranstvakh Khardi $H^p$, $0
\leqslant\infty$”, Vestnik Moskovskogo universiteta. Seriya 1. Matematika. Mekhanika, 2008, no. 4, 3–13[10] J.-E. Andersson, “Rational approximation to function like $x^{\alpha}$ in integral norms”, Analysis Math., 14:1 (1988), 11–25 | DOI | MR | Zbl
[11] J.-E. Andersson, “Best rational approximation to Markov functions”, J. of Approximation Theory, 76:2 (1994), 219–232 | DOI | MR | Zbl
[12] A.A. Pekarskii, “Nailuchshie ravnomernye ratsionalnye priblizheniya funktsii Markova”, Algebra i analiz, 7 (1995), 121–132
[13] A. Papoulis, Signal analysis, McGrow Hill, NY, 1977, 431 pp. | Zbl
[14] A.R. Mirotin, A.A. Atvinovskii, “O nekotorykh svoistvakh funktsionalnogo ischisleniya zamknutykh operatorov v banakhovom prostranstve”, Problemy fiziki, matematiki i tekhniki, 2016, no. 4 (29), 63–67
[15] A.A. Atvinovskii, A.R. Mirotin, “Ob odnom funktsionalnom ischislenii zamknutykh operatorov v banakhovom prostranstve. II”, Izvestiya vysshikh uchebnykh zavedenii. Matematika, 2015, no. 5, 3–16
[16] A.A. Atvinovskii, A.R. Mirotin, “Obraschenie odnogo klassa operatorov v banakhovom prostranstve i nekotorye ego primeneniya”, Problemy fiziki, matematiki i tekhniki, 2013, no. 3 (16), 55–60
[17] N. Danford, Dzh. Shvarts, Lineinye operatory. Spektralnaya teoriya, Mir, M., 1966, 1063 pp.
[18] D.V. Widder, The Laplace transform, Princeton Univ. Press, N.J., 1946, 412 pp. | MR
[19] N.I. Akhiezer, Klassicheskaya problema momentov i nekotorye voprosy analiza, svyazannye s neyu, GIFML, M., 1961, 310 pp.