The Markov--Stieltjes transform of measures and discrete time systems
Problemy fiziki, matematiki i tehniki, no. 1 (2019), pp. 56-60.

Voir la notice de l'article provenant de la source Math-Net.Ru

А class of discrete time filters (systems) with frequency characteristics that are functions of Markov–Stieltjes type is considered. The description of these filters in terms of their system functions and impulse responses is announced. In particular, it is noted that this class contains all filters with completely monotonic impulse responses. The properties of stationarity, causality, stability and reversibility of the corresponding systems are described.
Mots-clés : Markov–Stieltjes transform
Keywords: filter, frequency characteristic, system function, stationary state, causality, stable system, invertible system.
@article{PFMT_2019_1_a9,
     author = {A. R. Mirotin and I. S. Kovaliova},
     title = {The {Markov--Stieltjes} transform of measures and discrete time systems},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {56--60},
     publisher = {mathdoc},
     number = {1},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2019_1_a9/}
}
TY  - JOUR
AU  - A. R. Mirotin
AU  - I. S. Kovaliova
TI  - The Markov--Stieltjes transform of measures and discrete time systems
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2019
SP  - 56
EP  - 60
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2019_1_a9/
LA  - ru
ID  - PFMT_2019_1_a9
ER  - 
%0 Journal Article
%A A. R. Mirotin
%A I. S. Kovaliova
%T The Markov--Stieltjes transform of measures and discrete time systems
%J Problemy fiziki, matematiki i tehniki
%D 2019
%P 56-60
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2019_1_a9/
%G ru
%F PFMT_2019_1_a9
A. R. Mirotin; I. S. Kovaliova. The Markov--Stieltjes transform of measures and discrete time systems. Problemy fiziki, matematiki i tehniki, no. 1 (2019), pp. 56-60. http://geodesic.mathdoc.fr/item/PFMT_2019_1_a9/

[1] I.S. Kovaleva, A.R. Mirotin, “Teorema o svertke dlya preobrazovaniya Markova–Stiltesa”, Problemy fiziki, matematiki i tekhniki, 2013, no. 3 (16), 66–70

[2] A.R. Mirotin, I.S. Kovalyova, “The Markov–Stieltjes transform on Hardy and Lebesgue spaces”, Integral Transforms and Special Functions, 27:12 (2016), 995–1007 | DOI | MR | Zbl

[3] A.R. Mirotin, I.S. Kovalyova, “Corrigendum to our paper “The Markov–Stieltjes transform on Hardy and Lebesgue spaces””, Integral Transforms and Special Functions, 28:5 (2017), 421–422 | DOI | MR | Zbl

[4] I.S. Kovaleva, A.R. Mirotin, “Obobschennyi operator Markova–Stiltesa v prostranstvakh Khardi i Lebega”, Trudy instituta matematiki, 25:1 (2017), 39–50 | Zbl

[5] A.R. Mirotin, Garmonicheskii analiz na abelevykh polugruppakh, GGU im. F. Skoriny, Gomel, 2008, 207 pp.

[6] M.G. Krein, A.A. Nudelman, Problema momentov Markova i ekstremalnye zadachi, Nauka. Glavnaya redaktsiya fiz.- mat. literatury, M., 1973, 552 pp. | MR

[7] N.K. Nikolski, Operators, Functions and System, translated by A. Hartman, v. 1, Mathematical Surveys and Monographs, 92, Hardy, Hankel, and Toeplitz, American Mathematical Society, Providence, Rhode Island, 2002, 461 pp. | MR

[8] U.M. Sibert, Tsepi i signaly sistemy, v 2 chastyakh, per. s angl., v. 2, ed. I.S. Ryzhak, Mir, M., 1988

[9] N.S. Vyacheslavov, E.P. Mochalina, “Ratsionalnye priblizheniya funktsii tipa Markova–Stiltesa v prostranstvakh Khardi $H^p$, $0

\leqslant\infty$”, Vestnik Moskovskogo universiteta. Seriya 1. Matematika. Mekhanika, 2008, no. 4, 3–13

[10] J.-E. Andersson, “Rational approximation to function like $x^{\alpha}$ in integral norms”, Analysis Math., 14:1 (1988), 11–25 | DOI | MR | Zbl

[11] J.-E. Andersson, “Best rational approximation to Markov functions”, J. of Approximation Theory, 76:2 (1994), 219–232 | DOI | MR | Zbl

[12] A.A. Pekarskii, “Nailuchshie ravnomernye ratsionalnye priblizheniya funktsii Markova”, Algebra i analiz, 7 (1995), 121–132

[13] A. Papoulis, Signal analysis, McGrow Hill, NY, 1977, 431 pp. | Zbl

[14] A.R. Mirotin, A.A. Atvinovskii, “O nekotorykh svoistvakh funktsionalnogo ischisleniya zamknutykh operatorov v banakhovom prostranstve”, Problemy fiziki, matematiki i tekhniki, 2016, no. 4 (29), 63–67

[15] A.A. Atvinovskii, A.R. Mirotin, “Ob odnom funktsionalnom ischislenii zamknutykh operatorov v banakhovom prostranstve. II”, Izvestiya vysshikh uchebnykh zavedenii. Matematika, 2015, no. 5, 3–16

[16] A.A. Atvinovskii, A.R. Mirotin, “Obraschenie odnogo klassa operatorov v banakhovom prostranstve i nekotorye ego primeneniya”, Problemy fiziki, matematiki i tekhniki, 2013, no. 3 (16), 55–60

[17] N. Danford, Dzh. Shvarts, Lineinye operatory. Spektralnaya teoriya, Mir, M., 1966, 1063 pp.

[18] D.V. Widder, The Laplace transform, Princeton Univ. Press, N.J., 1946, 412 pp. | MR

[19] N.I. Akhiezer, Klassicheskaya problema momentov i nekotorye voprosy analiza, svyazannye s neyu, GIFML, M., 1961, 310 pp.