Cylindrical bending of elastoplastic rectangular three-layer plate with compressible filler in temperature field
Problemy fiziki, matematiki i tehniki, no. 1 (2019), pp. 45-49.

Voir la notice de l'article provenant de la source Math-Net.Ru

Cylindrical bending of asymmetrical in thickness elastic-thermoplastic three-layer plates with a compressible filler under the action of loads and temperature was investigated. The kinematic hypotheses are based on the hypothesis of a broken line: the Kirchhoff hypotheses are accepted for the outer layers, the deformed normal remains rectilinear in a rigid compressible filler. A system of equilibrium equations and its analytical solution in displacements are obtained. Numerical realization of solutions for a three-layer metal-polymer plate is carried out.
Keywords: thermoplasticity, three-layered rectangular plate, cylindrical bending.
@article{PFMT_2019_1_a7,
     author = {A. S. Zelenaya},
     title = {Cylindrical bending of elastoplastic rectangular three-layer plate with compressible filler in temperature field},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {45--49},
     publisher = {mathdoc},
     number = {1},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2019_1_a7/}
}
TY  - JOUR
AU  - A. S. Zelenaya
TI  - Cylindrical bending of elastoplastic rectangular three-layer plate with compressible filler in temperature field
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2019
SP  - 45
EP  - 49
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2019_1_a7/
LA  - ru
ID  - PFMT_2019_1_a7
ER  - 
%0 Journal Article
%A A. S. Zelenaya
%T Cylindrical bending of elastoplastic rectangular three-layer plate with compressible filler in temperature field
%J Problemy fiziki, matematiki i tehniki
%D 2019
%P 45-49
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2019_1_a7/
%G ru
%F PFMT_2019_1_a7
A. S. Zelenaya. Cylindrical bending of elastoplastic rectangular three-layer plate with compressible filler in temperature field. Problemy fiziki, matematiki i tehniki, no. 1 (2019), pp. 45-49. http://geodesic.mathdoc.fr/item/PFMT_2019_1_a7/

[1] D.V. Leonenko, “Kolebaniya trekhsloinogo sterzhnya pod deistviem impulsnykh nagruzok razlichnykh form”, Materialy, tekhnologii, instrumenty, 9:2 (2004), 23–27 | Zbl

[2] E.I. Starovoitov, A.V. Yarovaya, D.V. Leonenko, “Vibrations of round threelayer plates under the action of various types of surface loads”, Strength of materials, 35:4 (2003), 346–352 | DOI

[3] D.V. Leonenko, “Radialnye sobstvennye kolebaniya uprugikh trekhsloinykh tsilindricheskikh obolochek”, Mekhanika mashin, mekhanizmov i materialov, 2010, no. 3 (12), 53–56

[4] E.I. Starovoitov, A.V. Yarovaya, D.V. Leonenko, “Deformirovanie trekhsloinogo uprugogo sterzhnya lokalnymi nagruzkami”, Problemy mashinostroeniya i avtomatizatsii, 2001, no. 4, 37–40

[5] E.I. Starovoitov, D.V. Leonenko, “Thermoelastic bending of a sandwich ring plate on an elastic foundation”, International Applied Mechanics, 44:9 (2008), 1032–1040 | DOI | MR

[6] D.V. Leonenko, A.S. Zelenaya, “Uprugoplasticheskii izgib pryamougolnoi trekhsloinoi plastiny so szhimaemym zapolnitelem”, mezhdunar. nauchn.-tekhn. sb., Teoreticheskaya i prikladnaya mekhanika, 33, BNTU, Minsk, 2018, 65–71

[7] D.V. Leonenko, A.S. Zelenaya, “Napryazhenno-deformirovannoe sostoyanie fizicheski nelineinoi trekhsloinoi pryamougolnoi plastiny so szhimaemym zapolnitelem”, Mekhanika mashin, mekhanizmov i materialov, 2018, no. 2 (43), 77–82

[8] A.A. Ilyushin, P.M. Ogibalov, Uprugoplasticheskie deformatsii polykh tsilindrov, Izd-vo MGU, M., 1960, 224 pp.

[9] E.I. Starovoitov, A.V. Yarovaya, D.V. Leonenko, Deformirovanie trekhsloinykh elementov konstruktsii na uprugom osnovanii, Fizmalit, M., 2006, 379 pp.