On non-$n$-semiabelianism polyadic groupoids of special class
Problemy fiziki, matematiki i tehniki, no. 1 (2019), pp. 31-39.

Voir la notice de l'article provenant de la source Math-Net.Ru

The permutability of the elements in polyadic groupoids with polyadic operation $\eta_{s,\sigma,k}$ that is defined on Cartesian power of $A^k$ $n$-ary groupoid $\langle A,\eta\rangle$ by substitution $\sigma\in\mathbf{S}_k$ and $n$-ary operation $\eta$ are considered. The main result of the article is the theorem in which sufficient conditions of non-$n$-semiabelianism of $l$-ary ($l = s(n-1) + 1$, $k\geqslant 2$) groupoid $\langle A^k,\eta_{s,\sigma,k}\rangle$ are formulated. Numerous consequences of this theorem are given. In particular, it was found that if substitution $\sigma$ satisfies the conditions $\sigma^{n-1}\ne\sigma$, $\sigma^l=\sigma$, $n$-ary group $\langle A,\eta\rangle$ has no less than two elements, then polyadic groupoid $\langle A^k,\eta_{s,\sigma,k}\rangle$ is a non-$n$-semiabelian polyadic group.
Keywords: polyadic operation, $n$-ary groupoid, semiabelianism, neutral sequence.
Mots-clés : abelianism
@article{PFMT_2019_1_a5,
     author = {A. M. Gal'mak},
     title = {On non-$n$-semiabelianism polyadic groupoids of special class},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {31--39},
     publisher = {mathdoc},
     number = {1},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2019_1_a5/}
}
TY  - JOUR
AU  - A. M. Gal'mak
TI  - On non-$n$-semiabelianism polyadic groupoids of special class
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2019
SP  - 31
EP  - 39
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2019_1_a5/
LA  - ru
ID  - PFMT_2019_1_a5
ER  - 
%0 Journal Article
%A A. M. Gal'mak
%T On non-$n$-semiabelianism polyadic groupoids of special class
%J Problemy fiziki, matematiki i tehniki
%D 2019
%P 31-39
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2019_1_a5/
%G ru
%F PFMT_2019_1_a5
A. M. Gal'mak. On non-$n$-semiabelianism polyadic groupoids of special class. Problemy fiziki, matematiki i tehniki, no. 1 (2019), pp. 31-39. http://geodesic.mathdoc.fr/item/PFMT_2019_1_a5/

[1] A.M. Galmak, A.D. Rusakov, “O poliadicheskikh operatsiyakh na dekartovykh stepenyakh”, Izvestiya Gomelskogo gosudarstvennogo universiteta im. F. Skoriny, 2014, no. 3 (84), 35–40

[2] A.M. Galmak, “Ob operatsii $[\,]_{l,\sigma,k}$”, Vesnik MDU im. A.A. Kulyashova, 2010, no. 1 (35), 34–38

[3] A.M. Galmak, Mnogomestnye operatsii na dekartovykh stepenyakh, Izd. tsentr BGU, Minsk, 2009, 265 pp.

[4] E.L. Post, “Polyadic groups”, Trans. Amer. Math. Soc., 48:2 (1940), 208–350 | DOI | MR

[5] A.M. Galmak, “O razreshimosti uravnenii v $^k,\eta_{s,\sigma,k}>$”, Vesnik MDU im. A.A. Kulyashova, 2018, no. 1 (51), 4–10

[6] W. Dörnte, “Untersuchungen über einen verallgemeinerten Gruppenbegrieff”, Math. Z., 29 (1928), 1–19 | DOI | MR | Zbl

[7] A.M. Galmak, Yu.I. Kulazhenko, “O ne $n$-poluabelevykh poliadicheskikh gruppoidakh spetsialnogo vida”, Vesnik MDU im. A.A. Kulyashova, 2018, no. 2, 55–61

[8] A.M. Galmak, “O perestanovochnosti elementov poliadicheskikh gruppoidakh spetsialnogo vida”, Problemy fiziki, matematiki i tekhniki, 2018, no. 3 (36), 70–75 | Zbl

[9] A.M. Galmak, “O totalnoi neassotsiativnosti poliadicheskikh operatsii”, Vesnik MDU im. A.A. Kulyashova, 2018, no. 2, 4–14 | MR