On non-$n$-semiabelianism polyadic groupoids of special class
Problemy fiziki, matematiki i tehniki, no. 1 (2019), pp. 31-39

Voir la notice de l'article provenant de la source Math-Net.Ru

The permutability of the elements in polyadic groupoids with polyadic operation $\eta_{s,\sigma,k}$ that is defined on Cartesian power of $A^k$ $n$-ary groupoid $\langle A,\eta\rangle$ by substitution $\sigma\in\mathbf{S}_k$ and $n$-ary operation $\eta$ are considered. The main result of the article is the theorem in which sufficient conditions of non-$n$-semiabelianism of $l$-ary ($l = s(n-1) + 1$, $k\geqslant 2$) groupoid $\langle A^k,\eta_{s,\sigma,k}\rangle$ are formulated. Numerous consequences of this theorem are given. In particular, it was found that if substitution $\sigma$ satisfies the conditions $\sigma^{n-1}\ne\sigma$, $\sigma^l=\sigma$, $n$-ary group $\langle A,\eta\rangle$ has no less than two elements, then polyadic groupoid $\langle A^k,\eta_{s,\sigma,k}\rangle$ is a non-$n$-semiabelian polyadic group.
Keywords: polyadic operation, $n$-ary groupoid, semiabelianism, neutral sequence.
Mots-clés : abelianism
@article{PFMT_2019_1_a5,
     author = {A. M. Gal'mak},
     title = {On non-$n$-semiabelianism polyadic groupoids of special class},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {31--39},
     publisher = {mathdoc},
     number = {1},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2019_1_a5/}
}
TY  - JOUR
AU  - A. M. Gal'mak
TI  - On non-$n$-semiabelianism polyadic groupoids of special class
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2019
SP  - 31
EP  - 39
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2019_1_a5/
LA  - ru
ID  - PFMT_2019_1_a5
ER  - 
%0 Journal Article
%A A. M. Gal'mak
%T On non-$n$-semiabelianism polyadic groupoids of special class
%J Problemy fiziki, matematiki i tehniki
%D 2019
%P 31-39
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2019_1_a5/
%G ru
%F PFMT_2019_1_a5
A. M. Gal'mak. On non-$n$-semiabelianism polyadic groupoids of special class. Problemy fiziki, matematiki i tehniki, no. 1 (2019), pp. 31-39. http://geodesic.mathdoc.fr/item/PFMT_2019_1_a5/