Realization of the solution of viscoelasticity’ problems for a pipe from a functional gradient material
Problemy fiziki, matematiki i tehniki, no. 1 (2019), pp. 85-90.

Voir la notice de l'article provenant de la source Math-Net.Ru

The stress-strain state of a viscoelastic tube made of inhomogeneous materials under the action of internal pressure is determined. The main dependences for the calculation of pipes made of heterogeneous materials are presented. On the basis of the received formulas for finding deformations the computer program of calculation of deformations in a pipe changing in time is created. The implementation of calculations of the stress-strain state in the pipe and the parameters of creep and relaxation nuclei is presented.
Keywords: viscoelasticity, pipe, functionally graded material, strain.
@article{PFMT_2019_1_a15,
     author = {V. V. Mozharovsky and D. S. Kuzmenkov and E. A. Golubeva},
     title = {Realization of the solution of viscoelasticity{\textquoteright} problems for a pipe from a functional gradient material},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {85--90},
     publisher = {mathdoc},
     number = {1},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2019_1_a15/}
}
TY  - JOUR
AU  - V. V. Mozharovsky
AU  - D. S. Kuzmenkov
AU  - E. A. Golubeva
TI  - Realization of the solution of viscoelasticity’ problems for a pipe from a functional gradient material
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2019
SP  - 85
EP  - 90
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2019_1_a15/
LA  - ru
ID  - PFMT_2019_1_a15
ER  - 
%0 Journal Article
%A V. V. Mozharovsky
%A D. S. Kuzmenkov
%A E. A. Golubeva
%T Realization of the solution of viscoelasticity’ problems for a pipe from a functional gradient material
%J Problemy fiziki, matematiki i tehniki
%D 2019
%P 85-90
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2019_1_a15/
%G ru
%F PFMT_2019_1_a15
V. V. Mozharovsky; D. S. Kuzmenkov; E. A. Golubeva. Realization of the solution of viscoelasticity’ problems for a pipe from a functional gradient material. Problemy fiziki, matematiki i tehniki, no. 1 (2019), pp. 85-90. http://geodesic.mathdoc.fr/item/PFMT_2019_1_a15/

[1] V.V. Mozharovskii, E.A. Golubeva, D.S. Kuzmenkov, “Metodika rozrakhunku napruzheno-deformovanogo stanu sharuvatikh trub z urakhuvannyam yavisch povzuchosti i relaksatsiï”, Visnik Kiïvskogo natsionalnogo universitetu imeni Tarasa Shevchenka, 2017, no. 3, 151–156

[2] N. Tutuncu, M. Ozturk, “Exact solutions for stresses in functionally graded pressure vessels”, Composites Part B: Engineering, 32 (2001), 683–686 | DOI

[3] V.V. Mozharovskii, “O kontaktnom vzaimodeistvii zhestkogo indentora s armirovannym rezinovym sloem s uchetom yavlenii vyazkouprugosti”, Polimernye materialy i tekhnologii, 3:2 (2017), 70–79 | Zbl

[4] V.V. Mozharovskii, M.Yu. Bokii, “Metod rascheta kharakteristik kontakta tel s ortotropnym pokrytiem”, Novye matematicheskie metody i kompyuternye tekhnologii v proektirovanii, proizvodstve i nauchnykh issledovaniyakh, Materialy XX Respublikanskoi nauchnoi konferentsii (Gomel, 20–22 marta 2017 g.), GGU im. F. Skoriny, Gomel, 2017, 184

[5] V.V. Mozharovsky, N.A. Maryina, K.B. Ghazaryan, “Boundary element method in determining the stress-strain state of composite coating in tribological systems”, Ukrainian Conference in Applied Mathematics (28–30 September, 2017, Ivan Franko National University of Lviv, Lviv, Ukraine), 76–77

[6] P.M. Ogibalov, M.A. Koltunov, I.M. Tyuneeva, “Eksperimentalno-teoreticheskie metody opredeleniya uprugo-vyazkikh kharakteristik stekloplastikov”, Uprugost i neuprugost, 2, Moskovskii universitet, 1971, 175–192

[7] V.V. Mozharovskii, V.E. Starzhinskii, Prikladnaya mekhanika sloistykh tel iz kompozitov: Ploskie kontaktnye zadachi, Nauka, M., 1988, 271 pp.

[8] V.V. Mozharovskii, Laboratornyi praktikum i metodicheskie ukazaniya po spetskursu lektsii «Optimalnoe proektirovanie» dlya studentov matematicheskogo fakulteta, Gomel, 1996, 56 pp.