The first integrals and rational solutions of differential equations with a moving singular line
Problemy fiziki, matematiki i tehniki, no. 1 (2019), pp. 72-77.

Voir la notice de l'article provenant de la source Math-Net.Ru

The nonlinear autonomous higher-order differential equations with a moving singular line are studied. The first integrals of the Chazy equation and some other equations with a moving singular line are obtained. Nonlinear differential equations, for which general solutions are rational solutions of equations with a moving singular line are obtained. It is shown that with the help of Bäcklund transformations, rational solutions of equations with a movable singular line can be transformed into each other. Nonlinear differential equations of the second or third degree with respect to the highest derivative are obtained, for which these rational solutions are general solutions.
Keywords: differential equations, resonances, first integrals, Bäcklund transform, movable singular line.
Mots-clés : rational solutions
@article{PFMT_2019_1_a13,
     author = {B. Zhang and Y. Chen and I. P. Martynov},
     title = {The first integrals and rational solutions of differential equations with a moving singular line},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {72--77},
     publisher = {mathdoc},
     number = {1},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2019_1_a13/}
}
TY  - JOUR
AU  - B. Zhang
AU  - Y. Chen
AU  - I. P. Martynov
TI  - The first integrals and rational solutions of differential equations with a moving singular line
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2019
SP  - 72
EP  - 77
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2019_1_a13/
LA  - ru
ID  - PFMT_2019_1_a13
ER  - 
%0 Journal Article
%A B. Zhang
%A Y. Chen
%A I. P. Martynov
%T The first integrals and rational solutions of differential equations with a moving singular line
%J Problemy fiziki, matematiki i tehniki
%D 2019
%P 72-77
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2019_1_a13/
%G ru
%F PFMT_2019_1_a13
B. Zhang; Y. Chen; I. P. Martynov. The first integrals and rational solutions of differential equations with a moving singular line. Problemy fiziki, matematiki i tehniki, no. 1 (2019), pp. 72-77. http://geodesic.mathdoc.fr/item/PFMT_2019_1_a13/

[1] I.P. Martynov, “O differentsialnykh uravneniyakh s podvizhnymi kriticheskimi osobymi tochkami”, Differentsialnye uravneniya, 9:10 (1973), 1780–1791 | Zbl

[2] M.J. Ablowitz, A. Ramani, H. Segur, “A connection between nonlinear evolution equations and ordinary differentail equation of P-type. I”, J. Math. Phys., 21:4 (1980), 715–721 | DOI | MR | Zbl

[3] T.N. Vankova, I.P. Martynov, O.N. Parmanchuk, V.A. Pronko, “O nekotorykh analiticheskikh svoistvakh reshenii algebraicheskikh differentsialnykh uravnenii”, Vesnik Grodzenskaga dzyarzhaŭnaga ŭniversiteta imya Yanki Kupaly. Seryya 2. Matematyka. Fizika. Infarmatyka, vylichalnaya tekhnikai kiravanne, 2008, no. 1 (64), 8–16

[4] A.P. Fordy, A. Pickering, “Analysing negative resonances in the Painleve test”, Physics Letters A, 160:4 (1991), 347–354 | DOI | MR

[5] A.G. Zdunek, I.P. Martynov, V.A. Pronko, “O ratsionalnykh resheniyakh differentsialnykh uravnenii”, Vesnik Grodzenskaga dzyarzhaŭnaga ŭniversiteta imya Yanki Kupaly. Seryya 2. Matematyka. Fizika. Infarmatyka, vylichalnaya tekhnikai kiravanne, 3:1 (2000), 33–39

[6] J. Shazy, “Sur les equation differentielles du troisieme ordre et d'ordre suprieur, dont l'integrable a ses points critiques fixes”, Acta Math., 4 (1911), 317–385 | MR

[7] T.N. Vankova, I.P. Martynov, “Ob odnom obobschenii uravneniya Shazi s podvizhnoi osoboi liniei”, Differentsialnye uravneniya, 45:8 (2009), 1085–1094 | Zbl

[8] P.A. Clarkson, P.J. Olver, “Symmetry and the Chazy equation”, Journal of Differential Equations, 124:1 (1996), 225–246 | DOI | MR | Zbl

[9] C.M. Cosgrove, “Higher-order Painleve equations in the polynomial class II. Bureau symbol P 1”, Stud. Appl. Math., 116:4 (2006), 321–413 | DOI | MR | Zbl

[10] U. Muğan, F. Jrad, “Non-polynomial third order equations which pass the Painleve test”, Zeitschrift fur Naturforschung A, 59 a:3 (2004), 163–180

[11] F. Jrad, U. Muğan, “Non-polynomial fourth order equations which pass the Painleve test”, Zeitschrift fur Naturforschung A, 60 a:6 (2005), 387–400

[12] B. Chzhan, I.P. Martynov, “O ratsionalnykh resheniyakh odnogo klassa nepolinomialnykh differentsialnykh uravnenii chetvertogo poryadka”, Vesnik Grodzenskaga dzyarzhaŭnaga ŭniversiteta imya Yanki Kupaly. Seryya 2. Matematyka. Fizika. Infarmatyka, vylichalnaya tekhnikai kiravanne, 8:2 (2018), 32–40 | Zbl

[13] T.K. Andreeva, I.P. Martynov, “Preobrazovaniya Beklunda mezhdu resheniyami uravnenii tretego poryadka”, Vesnik Grodzenskaga dzyarzhaŭnaga ŭniversiteta imya Yanki Kupaly. Seryya 2. Matematyka. Fizika. Infarmatyka, vylichalnaya tekhnikai kiravanne, 87:3 (2009), 37–46

[14] T.N. Vankova, I.P. Martynov, “Ob analiticheskikh svoistvakh reshenii odnogo klass differentsialnykh uravnenii tretego poryadka”, Analiticheskie metody analiza i differentsialnykh uravnenii, Tez. dokl. Mezhdunar. nauch. seminara (Minsk, 10–14 sent. 2012 g.), IM NANB, Minsk, 2012, 80

[15] I.P. Martynov, “Analiticheskie svoistva reshenii odnogo differentsialnogo uravneniya tretego poryadka”, Differentsialnye uravneniya, 21:5 (1985), 764–771 | Zbl

[16] I.P. Martynov, V.A. Pronko, “Ob odnom uravnenii tretego poryadka tipa Penleve”, Differentsialnye uravneniya, 24:9 (1988), 1640–1641 | Zbl

[17] V.V. Golubev, Lektsii po analiticheskoi teorii differentsialnykh uravnenii, GITTL, M., 1950, 436 pp.

[18] S.G. Kondratenya, “K resheniyu odnoi problemy Penleve”, Differentsialnye uravneniya, 16:11 (1980), 2095–2098 | Zbl

[19] Yan Chen, I.P. Martynov, “Ob analiticheskikh svoistvakh reshenii odnoi sistemy tretego poryadka”, Vesnik Grodzenskaga dzyarzhaŭnaga ŭniversiteta imya Yanki Kupaly. Seryya 2. Matematyka. Fizika. Infarmatyka, vylichalnaya tekhnikai kiravanne, 7:3 (2017), 26–32

[20] I.P. Martynov, E.S. Petrevich, “O differentsalnykh uravneniyakh chetvertogo poryadka s podvizhnoi osoboi liniei”, Eruginskie chteniya-2018, Tez. dokl. XVIII Mezhdunar. nauch. konf. po differentsialnym uravneniyam (Grodno, 15–18 maya 2018 g.), v. 1, GrGU, Grodno, 2018, 149 pp.

[21] V.V. Tsegelnik, Nekotorye analiticheskie svoistva i prilozheniya reshenii uravnenii Penleve-tipa, Izd. tsentr BGU, Minsk, 2007, 224 pp.

[22] M. Ablovits, Kh. Segur, Solitony i metod obratnoi zadachi, Mir, M., 1987, 480 pp.

[23] T.N. Vankova, I.P. Martynov, V.A. Pronko, “O differentsialnykh uravneniyakh s otritsatelnymi rezonansami”, Vesnik Grodzenskaga dzyarzhaŭnaga ŭniversiteta imya Yanki Kupaly. Seryya 2. Matematyka. Fizika. Infarmatyka, vylichalnaya tekhnikai kiravanne, 68:2 (2008), 32–38

[24] I.P. Martynov, “O svoistvakh reshenii odnogo differentsialnogo uravneniya tretego poryadka”, Dokl. AN BSSR, 23:9 (1979), 780–783 | Zbl