On the permutability of a Sylow subgroup with Schmidt subgroups of odd order
Problemy fiziki, matematiki i tehniki, no. 1 (2019), pp. 69-71.

Voir la notice de l'article provenant de la source Math-Net.Ru

A finite non-nilpotent group $G$ is called a Schmidt group if every proper subgroup of $G$ is nilpotent. In this paper the nonabelian composition factors of a group in which a Sylow subgroup is permutable with Schmidt subgroups of odd order is determined.
Keywords: finite group, Schmidt subgroup, Sylow subgroup, permutable subgroups.
Mots-clés : solvable group
@article{PFMT_2019_1_a12,
     author = {A. A. Trofimuk and E. V. Zubei},
     title = {On the permutability of a {Sylow} subgroup with {Schmidt} subgroups of odd order},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {69--71},
     publisher = {mathdoc},
     number = {1},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2019_1_a12/}
}
TY  - JOUR
AU  - A. A. Trofimuk
AU  - E. V. Zubei
TI  - On the permutability of a Sylow subgroup with Schmidt subgroups of odd order
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2019
SP  - 69
EP  - 71
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2019_1_a12/
LA  - ru
ID  - PFMT_2019_1_a12
ER  - 
%0 Journal Article
%A A. A. Trofimuk
%A E. V. Zubei
%T On the permutability of a Sylow subgroup with Schmidt subgroups of odd order
%J Problemy fiziki, matematiki i tehniki
%D 2019
%P 69-71
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2019_1_a12/
%G ru
%F PFMT_2019_1_a12
A. A. Trofimuk; E. V. Zubei. On the permutability of a Sylow subgroup with Schmidt subgroups of odd order. Problemy fiziki, matematiki i tehniki, no. 1 (2019), pp. 69-71. http://geodesic.mathdoc.fr/item/PFMT_2019_1_a12/

[1] V.S. Monakhov, “O konechnykh gruppakh s zadannym naborom podgrupp Shmidta”, Matem. zam., 58:5 (1995), 717–722 | Zbl

[2] V.S. Monakhov, “Podgruppy Shmidta, ikh suschestvovanie i nekotorye prilozheniya”, Trudy Ukr. matem. kongressa-2001, sektsiya 1, 2002, 81–90

[3] V.N. Tyutyanov, P.V. Bychkov, “Konechnye gruppy s nilpotentnymi podgruppami nechetnogo poryadka”, Problemy fiziki, matematiki i tekhniki, 2018, no. 3 (36), 84–86

[4] Ya.G. Berkovich, E.M. Palchik, “O perestanovochnosti podgrupp konechnoi gruppy”, Sib. mat. zhurn., 8:4 (1967), 741–753

[5] V.N. Knyagina, V.S. Monakhov, “O perestanovochnosti silovskikh podgrupp s podgruppami Shmidta”, Trudy instituta matematiki i mekhaniki UrO RAN, 16, no. 3, 2010, 130–139

[6] V.S. Monakhov, E.V. Zubei, “O kompozitsionnykh faktorakh konechnoi gruppy s OS-polunormalnoi silovskoi podgruppoi”, Trudy instituta matematiki NAN Belarusi, 26:1 (2018), 90–94

[7] V.S. Monakhov, E.V. Zubei, “O perestanovochnosti silovskikh podgrupp s podgruppami Shmidta iz nekotorogo ee dobavleniya”, Trudy instituta matematiki i mekhaniki UrO RAN, 24, no. 3, 2018, 145–154

[8] V.S. Monakhov, Vvedenie v teoriyu konechnykh grupp i ikh klassov, Vysheishaya shkola, Minsk, 2006, 207 pp.

[9] B. Huppert, Endliche Gruppen I, Berlin–Heidelberg–New York, 1967, 796 pp. | MR | Zbl

[10] V.N. Knyagina, V.S. Monakhov, “Konechnye gruppy s polunormalnymi podgruppami Shmidta”, Algebra i logika, 46:4 (2007), 448–458 | Zbl

[11] V.S. Monakhov, “Proizvedenie biprimarnoi i 2-razlozhimoi grupp”, Matem. zam., 23:5 (1978), 641–649 | Zbl