@article{PFMT_2018_4_a16,
author = {V. I. Murashka and S. M. Gorsky and Ya. I. Sandryhaila},
title = {$\mathfrak{K}_{\varphi}\mathfrak{K}_{\psi}$-convex functions and generalizations of classical inequalities},
journal = {Problemy fiziki, matematiki i tehniki},
pages = {98--102},
year = {2018},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/PFMT_2018_4_a16/}
}
TY - JOUR
AU - V. I. Murashka
AU - S. M. Gorsky
AU - Ya. I. Sandryhaila
TI - $\mathfrak{K}_{\varphi}\mathfrak{K}_{\psi}$-convex functions and generalizations of classical inequalities
JO - Problemy fiziki, matematiki i tehniki
PY - 2018
SP - 98
EP - 102
IS - 4
UR - http://geodesic.mathdoc.fr/item/PFMT_2018_4_a16/
LA - ru
ID - PFMT_2018_4_a16
ER -
%0 Journal Article
%A V. I. Murashka
%A S. M. Gorsky
%A Ya. I. Sandryhaila
%T $\mathfrak{K}_{\varphi}\mathfrak{K}_{\psi}$-convex functions and generalizations of classical inequalities
%J Problemy fiziki, matematiki i tehniki
%D 2018
%P 98-102
%N 4
%U http://geodesic.mathdoc.fr/item/PFMT_2018_4_a16/
%G ru
%F PFMT_2018_4_a16
V. I. Murashka; S. M. Gorsky; Ya. I. Sandryhaila. $\mathfrak{K}_{\varphi}\mathfrak{K}_{\psi}$-convex functions and generalizations of classical inequalities. Problemy fiziki, matematiki i tehniki, no. 4 (2018), pp. 98-102. http://geodesic.mathdoc.fr/item/PFMT_2018_4_a16/
[1] W.W. Breckner, “Stetigkeitsaussagen fur eine Klasse verallgemeinerter konvexer funktionen in topologischen linearen Raumen”, Publ. Inst. Math., 23 (1978), 13–20 | MR | Zbl
[2] E.K. Godunova, V.I. Levin, “Neravenstva dlya funktsii shirokogo klassa, soderzhaschego vypuklye, monotonnye i nekotorye drugie vidy funktsii”, Vychisl. mat. i mat. fiz., Mezhvuz. sb. nauch. trudov, MGPI, M., 1985, 138–142
[3] C.E.M. Pearce, A.M. Rubinov, “P-functions, quasi-convex functions and Hadamard-type inequalities”, J. Math. Anal. Appl., 240 (1999), 92–104 | DOI | MR | Zbl
[4] S. Varosanec, “On $h$-convexity”, J. Math. Anal. Appl., 326 (2007), 303–311 | DOI | MR | Zbl
[5] C.P. Niculescu, “Convexity according to means”, J. Math. Ineq. Appl., 6:4 (2003), 571–579 | MR | Zbl
[6] G.D. Anderson, M.K. Vamanamurthy, M. Vuorinen, “Generalized convexity and inequalities”, J. Math. Anal. Appl., 335 (2007), 1294–1308 | DOI | MR | Zbl
[7] A. Baricz, “Geometrically concave univariate distributions”, J. Math. Anal. Appl., 363 (2010), 182–196 | DOI | MR | Zbl
[8] J. Aczèl, “A generalization of the notion of convex functions”, Norske Vid. Selsk. Forhd., Trondhjem, 19:24 (1947), 87–90 | MR | Zbl
[9] M.V. Mihai, F. Mitroi-Symeonidis, “New Extensions of Popoviciu's Inequality”, Mediterr. J. Math., 2015 | DOI | MR
[10] M.W. Alomari, Some properties of $h$-$\mathfrak{MN}$-convexity and Jensen's type inequalities, 2017 | DOI
[11] I. Işcan, “Hermite-Hadamar type inequalities for harmonically convex functions”, Haccetepe J. Math. Stat., 43:6 (2014), 935–942 | MR
[12] M.A. Noor, K.I. Noor, M.U. Awan, “Some characterizations of harmonically log-convex functions”, Proc. Jangeon Math. Soc., 17:1 (2014), 51–61 | MR | Zbl
[13] I. Işcan, “Hermite-Hadamar type inequalities for GA-s-convex functions”, Le Matematiche, LXIX (2014), 129–146 | MR
[14] D. Grinberg, Generalizations of Popoviciu's inequality, 20 March 2008, arXiv: 0803.2958v1 | MR
[15] V. Cirtoaje, “Two generalizations of Popoviciu's inequality”, Crux Mathematicorum, 31:5 (2001), 313–318
[16] L.V. Radzivilovskii, “Obobschenie perestanovochnogo neravenstva i mongolskogo neravenstva”, Matem. prosv. Seriya. 3, 10 (2006), 210–224