Method of solving the special optimal control problems with phase constraints
Problemy fiziki, matematiki i tehniki, no. 4 (2018), pp. 80-84.

Voir la notice de l'article provenant de la source Math-Net.Ru

The formulation of the optimal control problem with phase constraints is given, the formula for the increment of the quality criterion is obtained, and two constructive optimality criteria are formulated (without using measures). The concept of structure and defining elements are introduced. A constructive algorithm for constructing a solution to the problem under study is proposed. An example of solving a problem is given.
Keywords: phase constraints, formula for incrementing the quality criterion, optimality criterion, determining elements
Mots-clés : structure, refinement, refinement equations.
@article{PFMT_2018_4_a13,
     author = {G. L. Karaseva and E. A. Ruzhitskaya},
     title = {Method of solving the special optimal control problems with phase constraints},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {80--84},
     publisher = {mathdoc},
     number = {4},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2018_4_a13/}
}
TY  - JOUR
AU  - G. L. Karaseva
AU  - E. A. Ruzhitskaya
TI  - Method of solving the special optimal control problems with phase constraints
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2018
SP  - 80
EP  - 84
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2018_4_a13/
LA  - ru
ID  - PFMT_2018_4_a13
ER  - 
%0 Journal Article
%A G. L. Karaseva
%A E. A. Ruzhitskaya
%T Method of solving the special optimal control problems with phase constraints
%J Problemy fiziki, matematiki i tehniki
%D 2018
%P 80-84
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2018_4_a13/
%G ru
%F PFMT_2018_4_a13
G. L. Karaseva; E. A. Ruzhitskaya. Method of solving the special optimal control problems with phase constraints. Problemy fiziki, matematiki i tehniki, no. 4 (2018), pp. 80-84. http://geodesic.mathdoc.fr/item/PFMT_2018_4_a13/

[1] Pontryagin L. S. i dr., Matematicheskaya teoriya optimalnykh protsessov, Nauka, M., 1969, 384 pp.

[2] A.Ya. Dubovitskii, A.A. Milyutin, “Zadachi na ekstremum pri nalichii ogranichenii”, Zhurnal vychislitelnoi matematiki i matematicheskoi fiziki, 5:3 (1965), 395–453

[3] R.F. Gabasov, F.M. Kirillova, Konstruktivnye metody optimizatsii, v. 2, Zadachi upravleniya, Izd-vo «Universitetskoe», Mn., 1984, 205 pp.

[4] Kostyukova O.I., Konechnyi algoritm optimizatsii lineinoi dinamicheskoi sistemy so smeshannymi ogranicheniyami, Preprint No 24(424), AN BSSR. Institut matematiki, Mn., 1990, 35 pp.

[5] G.L. Karaseva, “Kriterii optimalnosti dlya spetsialnoi zadachi mnogomernogo upravleniya”, Vestnik BGU. Seriya 1, 1997, no. 1, 49–52

[6] G.L. Karaseva, “Kriterii optimalnosti dlya zadachi upravleniya s negladkim kriteriem kachestva”, Izvestiya Gomelskogo gosudarstvennogo universiteta imeni F. Skoriny, 2010, no. 5 (62), 68–72

[7] N.A. Aleshin, G.L. Karaseva, “Zadacha optimalnogo upravleniya s negladkim kriteriem kachestva kak zadacha LP”, «Nauka molodykh», Sbornik nauchnykh statei po materialam X Vserossiiskoi nauchno-prakticheskoi konferentsii (g. Arzamas, 30–31 marta 2017 g.), Nizhegorodskii gosudarstvennyi tekhnicheskii universitet im. R.E. Alekseeva, 518–522

[8] S.P. Zhogal, S.I. Zhogal, A.V. Klimenko, “Issledovanie sluchainykh avtokolebatelnykh sistem s odnoi stepenyu svobody metodom kanonicheskikh razlozhenii”, Problemy fiziki, matematiki i tekhniki, 2017, no. 1 (30), 37–41

[9] S.P. Zhogal, S.I. Zhogal, A.V. Klimenko, “O suschestvovanii i edinstvennosti reshenii odnoi slozhnoi stokhasticheskoi differentsialnoi sistemy s zapazdyvaniem”, Problemy fiziki, matematiki i tekhniki, 2017, no. 2 (31), 50–54