The circular three-layer elastic-plastic plate with a compressible filler
Problemy fiziki, matematiki i tehniki, no. 4 (2018), pp. 72-79.

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of symmetric bending of a three-layer elastic plate with a light compressible filler asymmetrical in thickness is considered. Kirchhoff's hypotheses are accepted for thin bearing layers. In a relatively thick aggregate, the transverse shear, radial displacements and deflection are taken into account, which vary linearly in thickness are taken into account, the work of shear stresses is neglected. The differential equations of equilibrium in the displacements are obtained using the Lagrange variational method. Physical equations of state correspond to the theory of small elastic-plastic deformations of Ilyushin. The formulation and solution of the boundary value problem are given in displacements in a cylindrical coordinate system. Numerical results are presented.
Keywords: three-layer circular plate, light compressible filler, plasticity, iterative solution.
@article{PFMT_2018_4_a12,
     author = {Yu. V. Zakharchuk},
     title = {The circular three-layer elastic-plastic plate with a compressible filler},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {72--79},
     publisher = {mathdoc},
     number = {4},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2018_4_a12/}
}
TY  - JOUR
AU  - Yu. V. Zakharchuk
TI  - The circular three-layer elastic-plastic plate with a compressible filler
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2018
SP  - 72
EP  - 79
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2018_4_a12/
LA  - ru
ID  - PFMT_2018_4_a12
ER  - 
%0 Journal Article
%A Yu. V. Zakharchuk
%T The circular three-layer elastic-plastic plate with a compressible filler
%J Problemy fiziki, matematiki i tehniki
%D 2018
%P 72-79
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2018_4_a12/
%G ru
%F PFMT_2018_4_a12
Yu. V. Zakharchuk. The circular three-layer elastic-plastic plate with a compressible filler. Problemy fiziki, matematiki i tehniki, no. 4 (2018), pp. 72-79. http://geodesic.mathdoc.fr/item/PFMT_2018_4_a12/

[1] Yu.M. Pleskachevskii, E.I. Starovoitov, A.V. Yarovaya, Deformirovanie metallopolimernykh sistem, Bel. navuka, Minsk, 2004, 342 pp.

[2] V.D. Kubenko, Yu.M. Pleskachevskii, E.I. Starovoitov, D.V. Leonenko, “Natural vibrations of a sandwich beam on en elastic foundation”, International Applied Mechanics, 42:5 (2006), 541–547 | DOI | MR | Zbl

[3] E.I. Starovoitov, D.V. Leonenko, A.V. Yarovaya, “Vibrations of round threelayer plates under the action of various types of surface loads”, Strength of Materials, 35:4 (2003), 346–352 | DOI

[4] E.I. Starovoitov, D.V. Leonenko, A.V. Yarovaya, “Vibrations of a sandwich rod under local and impulsive forces”, International Applied Mechanics, 41:7 (2005), 809–816 | DOI | Zbl

[5] E.I. Starovoitov, V.D. Kubenko, D.V. Tarlakovskii, “Vibrations of circular sandwich plates connected with an elastic foundation”, Russian Aeronautics, 52:2 (2009), 151–157 | DOI

[6] E.I. Starovoitov, D.V. Leonenko, “Resonant effects of local loads on circular sandwich plates on an elastic foundation”, International Applied Mechanics, 46:1 (2010), 86–93 | DOI | MR | Zbl

[7] E.I. Starovoitov, “O peremennom nagruzhenii vyazkoplasticheskikh trekhsloinykh pologikh obolochek”, Vestnik Moskovskogo universiteta. Seriya 1: Matematika. Mekhanika, 1980, no. 2, 92–96

[8] V.V. Moskvitin, E.I. Starovoitov, “Deformatsiya i peremennye nagruzheniya dvukhsloinykh metallopolimernykh plastin”, Mekhanika kompozitnykh materialov, 1985, no. 3, 409–416

[9] V.V. Moskvitin, E.I. Starovoitov, “K issledovaniyu napryazhenno-deformirovannogo sostoyaniya dvukhsloinykh metallopolimernykh plastin pri tsiklicheskikh nagruzheniyakh”, Izv. AN SSSR. Mekhanika tverdogo tela, 1986, no. 1, 116–121

[10] A.G. Gorshkov, E.I. Starovoitov, A.V. Yarovaya, “Cyclic loading of elasticplastic bodies in neutron flux”, Mechanics of Solids, 36:1 (2001), 64–69

[11] E.I. Starovoitov, A.V. Yarovaya, D.V. Leonenko, “Deformirovanie uprugogo trekhsloinogo sterzhnya lokalnymi nagruzkami”, Problemy mashinostroeniya i avtomatizatsii, 2001, no. 4, 37–40

[12] E.I. Starovoitov, D.V. Leonenko, A.V. Yarovaya, “Elastoplastic bending of a sandwich bar on an elastic foundation”, International Applied Mechanics, 43:4 (2007), 451–459 | DOI | MR | Zbl

[13] E.I. Starovoitov, “Uprugoplasticheskoe deformirovanie trekhsloinykh sterzhnei v temperaturnom pole”, Problemy mashinostroeniya i avtomatizatsii, 2012, no. 3, 91–98

[14] E.I. Starovoitov, D.V. Leonenko, “Thermoplastic bending of a sandwich ring plate on an elastic foundation”, International Applied Mechanics, 44:9 (2008), 1032–1040 | DOI | MR

[15] E.I. Starovoitov, D.V. Leonenko, D.V. Tarlakovskii, “Deformirovanie trekhsloinoi krugovoi tsilindricheskoi obolochki v temperaturnom pole”, Problemy mashinostroeniya i avtomatizatsii, 2016, no. 1, 91–97

[16] Yu.V. Zakharchuk, “Deformirovanie krugovoi trekhsloinoi plastiny so szhimaemym zapolnitelem”, Problemy fiziki, matematiki i tekhniki, 2017, no. 4 (33), 53–57

[17] Yu.V. Zakharchuk, “Deformirovanie krugovoi trekhsloinoi plastiny s legkim szhimaemym zapolnitelem”, Teoreticheskaya i prikladnaya mekhanika, 33, BNTU, Minsk, 2018, 363–369

[18] Yu.V. Zakharchuk, “Peremescheniya v krugovoi trekhsloinoi plastine so szhimaemym zapolnitelem”, Mezhdunarodnyi sbornik nauchnykh trudov «Mekhanika», 10, 2018, 55–66

[19] E.I. Starovoitov, “K opisaniyu termomekhanicheskikh svoistv nekotorykh konstruktsionnykh materialov”, Problemy prochnosti, 1988, no. 4, 11–15