On a class of systems of second order differential equations without mobile critical features
Problemy fiziki, matematiki i tehniki, no. 4 (2018), pp. 62-65.

Voir la notice de l'article provenant de la source Math-Net.Ru

Necessary and sufficient conditions for the system under investigation to belong to the Painlevé type system are obtained.
Keywords: system of the ordinary differential equations, movable critical singularities, method of small parameter.
Mots-clés : Painlevé property
@article{PFMT_2018_4_a10,
     author = {T. N. Vankova and L. V. Detchenya and V. M. Petsevich and A. O. Seliverstova},
     title = {On a class of systems of second order differential equations without mobile critical features},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {62--65},
     publisher = {mathdoc},
     number = {4},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2018_4_a10/}
}
TY  - JOUR
AU  - T. N. Vankova
AU  - L. V. Detchenya
AU  - V. M. Petsevich
AU  - A. O. Seliverstova
TI  - On a class of systems of second order differential equations without mobile critical features
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2018
SP  - 62
EP  - 65
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2018_4_a10/
LA  - ru
ID  - PFMT_2018_4_a10
ER  - 
%0 Journal Article
%A T. N. Vankova
%A L. V. Detchenya
%A V. M. Petsevich
%A A. O. Seliverstova
%T On a class of systems of second order differential equations without mobile critical features
%J Problemy fiziki, matematiki i tehniki
%D 2018
%P 62-65
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2018_4_a10/
%G ru
%F PFMT_2018_4_a10
T. N. Vankova; L. V. Detchenya; V. M. Petsevich; A. O. Seliverstova. On a class of systems of second order differential equations without mobile critical features. Problemy fiziki, matematiki i tehniki, no. 4 (2018), pp. 62-65. http://geodesic.mathdoc.fr/item/PFMT_2018_4_a10/

[1] V.M. Petsevich, V.A. Pronko, “Neobkhodimye usloviya nalichiya svoistva Penleve u sistemy dvukh differentsialnykh uravnenii vtoroi stepeni”, Problemy fiziki, matematiki i tekhniki, 2018, no. 2 (35), 69–75

[2] F. Bureau, “Equations differentielles du second ordre en $Y$ et du second degre en $\ddot{Y}$ dont l'integrale generale est a points critiques fixes”, Ann. di Math., 91 (1972), 163–281 | MR | Zbl

[3] C.M. Cosgrove, G. Scoufis, “Painleve classification of a class of differential equations of the second order and second degree”, Stud. Appl. Math., 88 (1993), 25–87 | DOI | MR | Zbl

[4] E.L. Ains, Obyknovennye differentsialnye uravneniya, GNTIU, Kharkov, 1939, 719 pp.