Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PFMT_2018_4_a1, author = {S. S. Girgel}, title = {Optical {Weber--Gauss} beams}, journal = {Problemy fiziki, matematiki i tehniki}, pages = {13--17}, publisher = {mathdoc}, number = {4}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/PFMT_2018_4_a1/} }
S. S. Girgel. Optical Weber--Gauss beams. Problemy fiziki, matematiki i tehniki, no. 4 (2018), pp. 13-17. http://geodesic.mathdoc.fr/item/PFMT_2018_4_a1/
[1] A.P. Kiselev, “Lokalizovannye svetovye volny: paraksialnye i tochnye resheniya volnovogo uravneniya”, Optika i spektroskopiya, 102:4 (2007), 661–681
[2] S.S. Girgel, S.N. Kurilkina, “Vectorial of Bessel light beams”, Proc. SPIE, 4358, 2001, 258–264 | DOI
[3] M.A. Bandres, J.C. Gutierrez-Vega, S. Chavez-Cedra, “Parabolic nondiffracting optical wave fields”, Optics Letters, 29:1 (2004), 44–46 | DOI
[4] B.M. Rodr{\i}guez-Lara, R. Jauregui, “Dynamical constants of structured photons with parabolic-cylindrical symmetry”, Phys. Rev. A, 79:5 (2009), 055806, 4 pp. | DOI
[5] J.C. Gutierrez-Vega, M.A. Bandres, “Helmholtz-Gauss waves”, J. Opt. Soc. Am. A, 25:2 (2005), 289–298 | DOI | MR
[6] J. Durnin, “Exact solutions for nondiffracting beams. I. The scalar theory”, JOSA A, 4:4 (1987), 651–654 | DOI
[7] F. Gori, G. Guattari, C. Padovani, “Bessel-Gaussian beams”, Opt. Communs, 64 (1987), 491–495 | DOI
[8] C.C. Girgel, “Obobschennye puchki Besselya–Gaussa nepreryvnogo poryadka”, Problemy fiziki, matematiki i tekhniki, 2015, no. 4 (25), 11–15
[9] B.M. Rodr{\i}guez-Lara, “Normalization of optical Weber waves and Weber–Gauss beams”, JOSA A, 27:2 (2010), 327–332 | DOI | MR
[10] U. Miller, Simmetriya i razdelenie peremennykh, Mir, M., 1981, 342 pp.
[11] M. Abramovits, I. Stigan, Spravochnik po spetsialnym funktsiyam, Nauka, M., 1979, 830 pp.