Optical Weber--Gauss beams
Problemy fiziki, matematiki i tehniki, no. 4 (2018), pp. 13-17.

Voir la notice de l'article provenant de la source Math-Net.Ru

Analytical expressions in the closed shape for optical Weber–Gauss ($W-G$) beams are found and analyzed. Physical restrictions on possible values of the free parameters of such beams are discovered. Pictorial modelling of $W-G$ beams is fulfilled and it is shown that complex values of the free parameter a are physically comprehensible.
Keywords: beams, Weber–Gauss beams, Helmholtz–Gauss beams.
Mots-clés : parabolic Gauss beam
@article{PFMT_2018_4_a1,
     author = {S. S. Girgel},
     title = {Optical {Weber--Gauss} beams},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {13--17},
     publisher = {mathdoc},
     number = {4},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2018_4_a1/}
}
TY  - JOUR
AU  - S. S. Girgel
TI  - Optical Weber--Gauss beams
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2018
SP  - 13
EP  - 17
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2018_4_a1/
LA  - ru
ID  - PFMT_2018_4_a1
ER  - 
%0 Journal Article
%A S. S. Girgel
%T Optical Weber--Gauss beams
%J Problemy fiziki, matematiki i tehniki
%D 2018
%P 13-17
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2018_4_a1/
%G ru
%F PFMT_2018_4_a1
S. S. Girgel. Optical Weber--Gauss beams. Problemy fiziki, matematiki i tehniki, no. 4 (2018), pp. 13-17. http://geodesic.mathdoc.fr/item/PFMT_2018_4_a1/

[1] A.P. Kiselev, “Lokalizovannye svetovye volny: paraksialnye i tochnye resheniya volnovogo uravneniya”, Optika i spektroskopiya, 102:4 (2007), 661–681

[2] S.S. Girgel, S.N. Kurilkina, “Vectorial of Bessel light beams”, Proc. SPIE, 4358, 2001, 258–264 | DOI

[3] M.A. Bandres, J.C. Gutierrez-Vega, S. Chavez-Cedra, “Parabolic nondiffracting optical wave fields”, Optics Letters, 29:1 (2004), 44–46 | DOI

[4] B.M. Rodr{\i}guez-Lara, R. Jauregui, “Dynamical constants of structured photons with parabolic-cylindrical symmetry”, Phys. Rev. A, 79:5 (2009), 055806, 4 pp. | DOI

[5] J.C. Gutierrez-Vega, M.A. Bandres, “Helmholtz-Gauss waves”, J. Opt. Soc. Am. A, 25:2 (2005), 289–298 | DOI | MR

[6] J. Durnin, “Exact solutions for nondiffracting beams. I. The scalar theory”, JOSA A, 4:4 (1987), 651–654 | DOI

[7] F. Gori, G. Guattari, C. Padovani, “Bessel-Gaussian beams”, Opt. Communs, 64 (1987), 491–495 | DOI

[8] C.C. Girgel, “Obobschennye puchki Besselya–Gaussa nepreryvnogo poryadka”, Problemy fiziki, matematiki i tekhniki, 2015, no. 4 (25), 11–15

[9] B.M. Rodr{\i}guez-Lara, “Normalization of optical Weber waves and Weber–Gauss beams”, JOSA A, 27:2 (2010), 327–332 | DOI | MR

[10] U. Miller, Simmetriya i razdelenie peremennykh, Mir, M., 1981, 342 pp.

[11] M. Abramovits, I. Stigan, Spravochnik po spetsialnym funktsiyam, Nauka, M., 1979, 830 pp.