Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PFMT_2018_4_a0, author = {S. D. Barsukou and S. A. Khakhomov and Jun Kondoh}, title = {Features of periodical acoustic impedance structure and acoustic wave interaction in novel controllable {SAW} device}, journal = {Problemy fiziki, matematiki i tehniki}, pages = {7--12}, publisher = {mathdoc}, number = {4}, year = {2018}, language = {en}, url = {http://geodesic.mathdoc.fr/item/PFMT_2018_4_a0/} }
TY - JOUR AU - S. D. Barsukou AU - S. A. Khakhomov AU - Jun Kondoh TI - Features of periodical acoustic impedance structure and acoustic wave interaction in novel controllable SAW device JO - Problemy fiziki, matematiki i tehniki PY - 2018 SP - 7 EP - 12 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PFMT_2018_4_a0/ LA - en ID - PFMT_2018_4_a0 ER -
%0 Journal Article %A S. D. Barsukou %A S. A. Khakhomov %A Jun Kondoh %T Features of periodical acoustic impedance structure and acoustic wave interaction in novel controllable SAW device %J Problemy fiziki, matematiki i tehniki %D 2018 %P 7-12 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/PFMT_2018_4_a0/ %G en %F PFMT_2018_4_a0
S. D. Barsukou; S. A. Khakhomov; Jun Kondoh. Features of periodical acoustic impedance structure and acoustic wave interaction in novel controllable SAW device. Problemy fiziki, matematiki i tehniki, no. 4 (2018), pp. 7-12. http://geodesic.mathdoc.fr/item/PFMT_2018_4_a0/
[1] D.A. Hall, “Nonlinearity in piezoelectric ceramics”, J. Mater. Sci., 36 (2001), 4575 | DOI
[2] D. Royer, E. Dieulesain, Elastic Waves in Solids I, v. 1, Springer, Heidelberg, 2000, 216 | MR
[3] A. Tselev, P. Yu, Y. Cao, L.R. Dedon, L.W. Martin, S.V. Kalinin, P. Maksymovych, “Microwave a.c. conductivity of domain walls in ferroelectric thin film”, Nat. Commun., 2016, no. 7, 11630 | DOI
[4] V.Y. Shur, E.V. Pelegova, A.R. Akhmatkhanov, I.S. Baturin, “Micro- and nano-domain engineering in lithium niobate”, Ferroelectrics, 496:1 (2016), 49–69 | DOI
[5] J.R. Whyte, J.M. Gregg, “A diode for ferroelectric domain-wall motion”, Nat. Commun., 2015, no. 6, 7361 | DOI
[6] Y. Wu, M. Yang, P. Sheng, “Perspective: Acoustic metamaterials in transition”, J. Appl. Phys., 123 (2018), 090901 | DOI
[7] B. Liu, B. Ren, J. Zhao, X. Xu, Y. Feng, W. Zhao, Y. Jiang, “Experimental realization of all-angle negative refraction in acoustic gradient metasurface”, Appl. Phys. Lett., 111 (2017), 221602 | DOI
[8] H. Zhang, B. Liang, X. Zou, J. Yang, J. Yang, J. Cheng, “Omnidirectional broadband acoustic absorber based on metamaterials”, Appl. Phys. Exp., 2017, no. 10, 027201 | DOI
[9] R. Lu, T. Manzaneque, Y. Yang, S. Gong, “Lithium niobate phononic crystals for tailoring performance of RF laterally vibrating devices”, IEEE Trans., 65:6 (2018), 934–944
[10] Y. Xie, B. Popa, L. Zigoneanu, S.A. Cummer, “Measurement of a broadband negative index with space-coiling acoustic metamaterials”, Phys. Rev. Lett., 110 (2013), 175501 | DOI
[11] D. Li, L. Zigoneanu, B. Popa, S.A. Cummer, “Design of an acoustic metamaterial lens using genetic algorithms”, J. Acoust. Soc. Am., 132 (2012), 2823 | DOI
[12] L. Zigoneanu, B. Popa, S.A. Cummer, “Design and measurements of a broadband two-dimensional acoustic lens”, Phys. Rev. B, 84 (2011), 024305 | DOI
[13] T. Frenzel, J. D. Brehm, T. Buckmann, R. Schittny, M. Kadic, M. Wegener, “Three-dimensional labyrinthine acoustic metamaterials”, Appl. Phys. Lett., 103 (2013), 061907 | DOI
[14] S. Mohammadi, A.A. Eftekhar, W.D. Hunt, A. Adibi, “High-Q micromechanical resonators in a two-dimensional phononic crystal slab”, Appl. Phys. Lett., 94 (2009), 01KB05 | DOI
[15] Y. Iwasaki, K. Tsuruta, A. Ishikawa, “Rectification of Lamb wave propagation in thin plates with piezo-dielectric periodic structures”, Jpn. J. Appl. Phys., 55 (2016), 07KB02 | DOI
[16] B. Liang, B. Yuan, J. Cheng, “Acoustic diode: rectification of acoustic energy flux in one-dimensional systems”, Phys. Rev. Lett., 103 (2009), 104301 | DOI
[17] M. Lu, L. Feng, Y. Chen, “Phononic crystals and acoustic metamaterials”, J. Materials Today, 12:12 (2009), 34–42 | DOI
[18] V. Laude, M.E. Korotyaeva, “Stochastic excitation method for calculating the resolvent band structure of periodic media and waveguides”, Phys. Rev. B, 97 (2018), 224110 | DOI
[19] S. Peng, Z. He, H. Jia, A. Zhang, C. Qiu, M. Ke, Z. Liu, “Acoustic far-field focusing effect for twodimensional graded negative refractive-index sonic crystals”, Appl. Phys. Lett., 96 (2010), 263502 | DOI
[20] A. Noeth, T. Yamada, A.K. Tagantsev, N. Setter, “Electrical tuning of dc bias induced acoustic resonances in paraelectric thin films”, J. Appl. Phys., 104 (2008), 094102 | DOI
[21] A. Popa, D. Shinde, A. Konneker, S.A. Cummer, “Active acoustic metamaterials reconfigurable in real time”, Phys. Rev. B, 91 (2015), 220303 | DOI
[22] Z. Chen, Y. Wu, “Tunable topological phononic crystals”, Phys. Rev. Appl., 2016, no. 5, 054021 | DOI
[23] V.P. Pashchenko, “Controlled surface acoustic wave phoninic crystal based on induced periodic domains”, Proc. St. Petersburg State Polytechnic University, 2013, no. 3 (177), 55–59
[24] S.D. Barsukov, S.A. Khakhomov, I.V. Semchenko, “Acoustic waves in ceramics with the electroinduced anisotropy”, Journal of Automation, Mobile Robotics and Intelligent Systems, 3:4 (2009), 34
[25] P. Mackwitz, M. Rusing, G. Berth, A. Widhalm, K. Muller, A. Zrenner, “Periodic domain inversion in x-cut singlecrystal lithium niobate thin film”, Appl. Phys. Lett., 108 (2016), 152902 | DOI
[26] S.D. Barsukou, J. Kondoh, “Investigation of interaction of shear horizontal surface acoustic wave with controlled electroinduced domain structure”, Jpn. J. Appl. Phys., 56 (2017), 07JD07 | DOI