On $S$-quasinormal subgroups in finite groups
Problemy fiziki, matematiki i tehniki, no. 3 (2018), pp. 63-66.

Voir la notice de l'article provenant de la source Math-Net.Ru

The structure of a finite group $S$ with a proper subgroup $H$ which is permutable with all subgroups of Schmidt of group $G$ (then $H$ is called $S$-quasinormal subgroup) is investigated.
Keywords: Schmidt group (minimal nonnilpotent group), permutable subgroups
Mots-clés : solvable group.
@article{PFMT_2018_3_a9,
     author = {S. Yu. Bashun and E. M. Palchik},
     title = {On $S$-quasinormal subgroups in finite groups},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {63--66},
     publisher = {mathdoc},
     number = {3},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2018_3_a9/}
}
TY  - JOUR
AU  - S. Yu. Bashun
AU  - E. M. Palchik
TI  - On $S$-quasinormal subgroups in finite groups
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2018
SP  - 63
EP  - 66
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2018_3_a9/
LA  - ru
ID  - PFMT_2018_3_a9
ER  - 
%0 Journal Article
%A S. Yu. Bashun
%A E. M. Palchik
%T On $S$-quasinormal subgroups in finite groups
%J Problemy fiziki, matematiki i tehniki
%D 2018
%P 63-66
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2018_3_a9/
%G ru
%F PFMT_2018_3_a9
S. Yu. Bashun; E. M. Palchik. On $S$-quasinormal subgroups in finite groups. Problemy fiziki, matematiki i tehniki, no. 3 (2018), pp. 63-66. http://geodesic.mathdoc.fr/item/PFMT_2018_3_a9/

[1] O. Ore, “Contributions to the theory of groups of finite order”, Duke Math. J., 1939, no. 5, 431–460 | DOI | MR

[2] O. Kegel, “Producte nilpotenter Gruppen”, Archiv der Math., 12 (1961), 90–93 | DOI | MR | Zbl

[3] O. Kegel, “Sylow-Gruppen und Subnormalteiler endlicher Gruppen”, Math. Zeitschrift, 78 (1962), 205–221 | DOI | MR | Zbl

[4] D. Gorenstein, Konechnye prostye gruppy. Vvedenie v ikh klassifikatsiyu, Mir, M., 1985, 352 pp.

[5] B. Huppert, Endliche Gruppen, v. I, Springer-Verlag, Berlin, 1982, 793 pp. | MR

[6] Yu.A. Golfand, “O gruppakh, vse podgruppy kotorykh spetsialnye”, Doklady AN SSSR, 60:8 (1948), 1313–1315 | Zbl

[7] Ya.G. Berkovich, E.M. Palchik, “O konechnykh gruppakh s perestanovochnymi podgruppami”, Sibirsk. matem. zh., 8:4 (1967), 741–753

[8] E.M. Palchik, O.V. Golubeva, “O podgruppakh Shmidta prostykh neabelevykh konechnykh K-grupp”, Izvestiya Gomelskogo gosudarstvennogo universiteta im. F. Skoriny. Voprosy algebry, 2000, no. 3 (16), 138–144

[9] S.A. Chunikhin, Podgruppy konechnykh grupp, Nauka i tekhnika, Minsk, 1964, 158 pp.

[10] J.C. Lennox, E. Stewart, Subnormal subgroups of groups, Clarendon press, Oxford, 1987, 253 pp. | MR | Zbl

[11] G. Glauberman, Factorizations in local subgroups of finite groups, Regional conf. series in Math., 33, Amer. Math. Soc., Providence, 1977, 74 pp. | DOI | MR | Zbl

[12] V.S. Monakhov, “Proizvedenie konechnykh grupp, blizkikh k nilpotentnym”, Konechnye gruppy, Nauka i tekhnika, Minsk, 1975, 70–100

[13] S.Yu. Bashun, “3'-podgruppy Shmidta chetnogo poryadka v konechnykh gruppakh”, Vestsi NAN Belarusi, ser. fiz.-mat. n., 2013, no. 1, 57–63

[14] Z. Arad, E. Fisman, “On the finite factorizable groups”, J. Algebra, 86:2 (1984), 522–548 | DOI | MR | Zbl

[15] V.N. Knyagina, V.S. Monakhov, “O suschestvovanii podgrupp Shmidta v konechnykh nerazreshimykh gruppakh”, Sbornik nauchnykh rabot studentov vysshikh uchebnykh zavedenii Respubliki Belarus «NIRS 2002» (Minsk, 2003), 322–325

[16] Ya.G. Berkovich, “Uslovie, neobkhodimoe dlya sovpadeniya gruppy s kommutantom”, Izvestiya vysshikh uchebnykh zavedenii. Matematika, 1968, no. 8 (75), 14–18

[17] V.N. Knyagina, V.S. Monakhov, “Konechnye gruppy s polunormalnymi podgruppami Shmidta”, Algebra i logika, 46:4 (2007), 448–458 | Zbl