THz phase modulation with broadband metasurfaces for controlling light propagation
Problemy fiziki, matematiki i tehniki, no. 3 (2018), pp. 28-31.

Voir la notice de l'article provenant de la source Math-Net.Ru

The ultra-thin phase metasurface structures based on the complementary square split ring nanoantenna have been proposed to achieve the THz optical metalenses with multi-dimensional and multi-focusing. The Fabry–Pérot resonance mode could be usefully employed in explaining the principle of beam propagation and efficient transmission. The THz metalens can transfer the linear cross-polarization efficiently under the effect of the gratings on the incident plane. By locally tailoring edge lengths and opening angles of the split rings, full control over abrupt phase changes can be achieved. Two symmetrically distributed parallel focal spots and two vertical focal spots with arbitrary distance are obtained by arranging the SSRs units on the metalenses. Furthermore, we apply the concept of partitioned phase mode to realize the double-focusing metalens in the longitudinal direction, which provides a flexible and convenient method for focusing properties.
Keywords: metasurface, Fabry–Pérot, optical phase.
Mots-clés : phase modulation, THz
@article{PFMT_2018_3_a3,
     author = {J. M and C. Song and Z.-D. Hu and A. P. Balmakov and S. A. Khakhomov and J. Wang and T. Sang},
     title = {THz phase modulation with broadband metasurfaces for controlling light propagation},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {28--31},
     publisher = {mathdoc},
     number = {3},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2018_3_a3/}
}
TY  - JOUR
AU  - J. M
AU  - C. Song
AU  - Z.-D. Hu
AU  - A. P. Balmakov
AU  - S. A. Khakhomov
AU  - J. Wang
AU  - T. Sang
TI  - THz phase modulation with broadband metasurfaces for controlling light propagation
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2018
SP  - 28
EP  - 31
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2018_3_a3/
LA  - en
ID  - PFMT_2018_3_a3
ER  - 
%0 Journal Article
%A J. M
%A C. Song
%A Z.-D. Hu
%A A. P. Balmakov
%A S. A. Khakhomov
%A J. Wang
%A T. Sang
%T THz phase modulation with broadband metasurfaces for controlling light propagation
%J Problemy fiziki, matematiki i tehniki
%D 2018
%P 28-31
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2018_3_a3/
%G en
%F PFMT_2018_3_a3
J. M; C. Song; Z.-D. Hu; A. P. Balmakov; S. A. Khakhomov; J. Wang; T. Sang. THz phase modulation with broadband metasurfaces for controlling light propagation. Problemy fiziki, matematiki i tehniki, no. 3 (2018), pp. 28-31. http://geodesic.mathdoc.fr/item/PFMT_2018_3_a3/

[1] P. Genevet et al., “Ultra-thin plasmonic optical vortex plate based on phase discontinuities”, Applied Physics Letters, 100 (2012), 013101 | DOI

[2] X.-Z. Chen et al., “Longitudinal Multifoci Metalens for Circularly Polarized Light”, Advanced Optical Materials, 3 (2015), 1201–1206 | DOI

[3] S. Larouche et al., “Infrared metamaterial phase holograms”, Nature Materials, 11 (2012), 450–454 | DOI

[4] J. Burch et al., “Conformable Holographic Metasurfaces”, Scientific Reports, 7 (2017), 4520 | DOI

[5] N. Yu et al., “A broadband, background-free quarter-wave plate based on plasmonic metasurfaces”, Nano Letters, 12 (2012), 6328–6333 | DOI

[6] N. Yu et al., “Flat optics with designer metasurfaces”, Nature Materials, 13 (2014), 139–150 | DOI

[7] A. Forouzmand et al., “Double split-loop resonators as building blocks of metasurfaces for light manipulation: bending, focusing and flat-top generation”, Journal of The Optical Society of America B, 33 (2016), 1411 | DOI

[8] Q. Yang et al., “Efficient flat metasurface lens for terahertz imaging”, Optics Express, 22 (2014), 25931–25939 | DOI

[9] F. Shen et al., “Polarization-independent longitudinal multifocusing metalens”, Optics Express, 23 (2015), 29855 | DOI

[10] N. Yu et al., “Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction”, Science, 334 (2011), 333–337 | DOI

[11] M. Kang et al., “Wave front engineering from an array of thinaperture antennas”, Optics Express, 20 (2012), 15882–15890 | DOI

[12] H. Shao et al., “Metalenses based on the non-parallel double-slit arrays”, Journal of Phyics D, 50 (2017), 384001 | DOI

[13] S. Marcos et al., “Multiple zone multifocal phase designs”, Optics Letters, 38 (2013), 3526–3529 | DOI

[14] P.J. Valle et al., “Analytic design of multiple-axis, multifocal diffractive lenses”, Optics Letters, 37 (2012), 1121–1123 | DOI

[15] D.-D. Wen et al., “Multifunctional metasurface lens for imaging and Fourier transform”, Scientific Reports, 6 (2016), 27628 | DOI

[16] Y.-J. Bao et al., “Enhanced optical performance of multifocal metalens with conic shapes”, Light: Science Applications, 6 (2017), 17071

[17] Q. Wang et al., “A broadband metasurface-based terahertz flat-lens array”, Advanced Optical Materials, 3 (2015), 779–785 | DOI

[18] J.-W. He et al., “A broadband terahertz ultrathin multi-focus lens”, Scientific Reports, 6 (2016), 28800 | DOI

[19] X.-Z. Chen et al., “Ultrathin metasurface laser beam shaper”, Advanced Optical Materials, 2 (2014), 978–982 | DOI

[20] M.-Y. Li et al., “Controllable design of superoscillatory lenses with multiple subdiffraction-limit foci”, Scientific Reports, 7 (2017), 1335 | DOI

[21] M. Hashemi et al., “A broadband multifocal metalens in the terahertz frequency range”, Optics Communications, 370 (2016), 306–310 | DOI