Finite groups with nilpotent subgroups of odd order
Problemy fiziki, matematiki i tehniki, no. 3 (2018), pp. 84-86
Cet article a éte moissonné depuis la source Math-Net.Ru
Composition factors of finite groups in which each subgroup odd order is nilpotent were defined.
Keywords:
finite group, group Schmidt.
Mots-clés : simple non-abelian group
Mots-clés : simple non-abelian group
@article{PFMT_2018_3_a14,
author = {V. N. Tyutyanov and V. P. Bychkov},
title = {Finite groups with nilpotent subgroups of odd order},
journal = {Problemy fiziki, matematiki i tehniki},
pages = {84--86},
year = {2018},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/PFMT_2018_3_a14/}
}
V. N. Tyutyanov; V. P. Bychkov. Finite groups with nilpotent subgroups of odd order. Problemy fiziki, matematiki i tehniki, no. 3 (2018), pp. 84-86. http://geodesic.mathdoc.fr/item/PFMT_2018_3_a14/
[1] B. Huppert, Endliche Gruppen, v. I, Springer, Berlin–Heidelberg–New York, 1967, 793 pp. | MR | Zbl
[2] K. Zsigmondy, “Zur Theorie der Potenzreste”, Monath. Math. Phis., 3 (1892), 265–284 | DOI | MR | Zbl
[3] H. H. Mitchell, “Determination of the ordinary and modular ternary linear groups”, Trans. Amer. Math. Soc., 12 (1911), 207–242 | DOI | MR | Zbl
[4] E. Stensholt, “Certain embedding finite group of Lie type”, J. Algebra, 53 (1978), 136–187 | DOI | MR | Zbl
[5] J.H. Conway et al., Atlas of finite groups, Clarendon, London, 1985, 252 pp. | MR | Zbl
[6] M. Suzuki, “On a class double transitive groups”, Ann. Math., 75:1 (1962), 105–145 | DOI | MR | Zbl