Finite groups with nilpotent subgroups of odd order
Problemy fiziki, matematiki i tehniki, no. 3 (2018), pp. 84-86.

Voir la notice de l'article provenant de la source Math-Net.Ru

Composition factors of finite groups in which each subgroup odd order is nilpotent were defined.
Keywords: finite group, group Schmidt.
Mots-clés : simple non-abelian group
@article{PFMT_2018_3_a14,
     author = {V. N. Tyutyanov and V. P. Bychkov},
     title = {Finite groups with nilpotent subgroups of odd order},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {84--86},
     publisher = {mathdoc},
     number = {3},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2018_3_a14/}
}
TY  - JOUR
AU  - V. N. Tyutyanov
AU  - V. P. Bychkov
TI  - Finite groups with nilpotent subgroups of odd order
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2018
SP  - 84
EP  - 86
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2018_3_a14/
LA  - ru
ID  - PFMT_2018_3_a14
ER  - 
%0 Journal Article
%A V. N. Tyutyanov
%A V. P. Bychkov
%T Finite groups with nilpotent subgroups of odd order
%J Problemy fiziki, matematiki i tehniki
%D 2018
%P 84-86
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2018_3_a14/
%G ru
%F PFMT_2018_3_a14
V. N. Tyutyanov; V. P. Bychkov. Finite groups with nilpotent subgroups of odd order. Problemy fiziki, matematiki i tehniki, no. 3 (2018), pp. 84-86. http://geodesic.mathdoc.fr/item/PFMT_2018_3_a14/

[1] B. Huppert, Endliche Gruppen, v. I, Springer, Berlin–Heidelberg–New York, 1967, 793 pp. | MR | Zbl

[2] K. Zsigmondy, “Zur Theorie der Potenzreste”, Monath. Math. Phis., 3 (1892), 265–284 | DOI | MR | Zbl

[3] H. H. Mitchell, “Determination of the ordinary and modular ternary linear groups”, Trans. Amer. Math. Soc., 12 (1911), 207–242 | DOI | MR | Zbl

[4] E. Stensholt, “Certain embedding finite group of Lie type”, J. Algebra, 53 (1978), 136–187 | DOI | MR | Zbl

[5] J.H. Conway et al., Atlas of finite groups, Clarendon, London, 1985, 252 pp. | MR | Zbl

[6] M. Suzuki, “On a class double transitive groups”, Ann. Math., 75:1 (1962), 105–145 | DOI | MR | Zbl