Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PFMT_2018_3_a12, author = {G. N. Kazimirov}, title = {Equivalent of the stru{\cyrs}tural characteristic of a complex process modeled by algebraical polynomials}, journal = {Problemy fiziki, matematiki i tehniki}, pages = {76--79}, publisher = {mathdoc}, number = {3}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/PFMT_2018_3_a12/} }
TY - JOUR AU - G. N. Kazimirov TI - Equivalent of the struсtural characteristic of a complex process modeled by algebraical polynomials JO - Problemy fiziki, matematiki i tehniki PY - 2018 SP - 76 EP - 79 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PFMT_2018_3_a12/ LA - ru ID - PFMT_2018_3_a12 ER -
G. N. Kazimirov. Equivalent of the struсtural characteristic of a complex process modeled by algebraical polynomials. Problemy fiziki, matematiki i tehniki, no. 3 (2018), pp. 76-79. http://geodesic.mathdoc.fr/item/PFMT_2018_3_a12/
[1] G. N. Kazimirov, “Ob odnom podkhode k uproscheniyu modeli slozhnogo protsessa na osnove algebraicheskikh mnogochlenov”, Izvestiya Gomelskogo gosudarstvennogo universiteta im. F. Skoriny, 2002, no. 6 (15), 171–174
[2] M.K. Potapov, “O strukturnykh kharakteristikakh klassov funktsii s dannym poryadkom nailuchshego priblizheniya”, Trudy MIAN SSSR, 134, 1975, 260–277 | Zbl
[3] G.N. Kazimirov, Priblizhenie algebraicheskimi mnogochlenami funktsii s dannym $k$-m obobschennym modulem gladkosti, Dis. ... kand. fiz.-mat. nauk: 01.01.01, M., 1995, 106 pp.
[4] G.N. Kazimirov, “Ekvivalentnaya strukturnaya kharakteristika dannogo obobschennogo modulya gladkosti”, Problemy fiziki, matematiki i tekhniki, 2010, no. 3 (4), 49–51