Equivalent of the struсtural characteristic of a complex process modeled by algebraical polynomials
Problemy fiziki, matematiki i tehniki, no. 3 (2018), pp. 76-79.

Voir la notice de l'article provenant de la source Math-Net.Ru

The equivalence of the generalized modulus of smoothness defined by the generalized shift operator of Jacobi type and the $K$-functional of Petre is proved.
Keywords: generalized Jacobi shift operator, generalized modulus of smoothness, $K$-functional.
@article{PFMT_2018_3_a12,
     author = {G. N. Kazimirov},
     title = {Equivalent of the stru{\cyrs}tural characteristic of a complex process modeled by algebraical polynomials},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {76--79},
     publisher = {mathdoc},
     number = {3},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2018_3_a12/}
}
TY  - JOUR
AU  - G. N. Kazimirov
TI  - Equivalent of the struсtural characteristic of a complex process modeled by algebraical polynomials
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2018
SP  - 76
EP  - 79
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2018_3_a12/
LA  - ru
ID  - PFMT_2018_3_a12
ER  - 
%0 Journal Article
%A G. N. Kazimirov
%T Equivalent of the struсtural characteristic of a complex process modeled by algebraical polynomials
%J Problemy fiziki, matematiki i tehniki
%D 2018
%P 76-79
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2018_3_a12/
%G ru
%F PFMT_2018_3_a12
G. N. Kazimirov. Equivalent of the struсtural characteristic of a complex process modeled by algebraical polynomials. Problemy fiziki, matematiki i tehniki, no. 3 (2018), pp. 76-79. http://geodesic.mathdoc.fr/item/PFMT_2018_3_a12/

[1] G. N. Kazimirov, “Ob odnom podkhode k uproscheniyu modeli slozhnogo protsessa na osnove algebraicheskikh mnogochlenov”, Izvestiya Gomelskogo gosudarstvennogo universiteta im. F. Skoriny, 2002, no. 6 (15), 171–174

[2] M.K. Potapov, “O strukturnykh kharakteristikakh klassov funktsii s dannym poryadkom nailuchshego priblizheniya”, Trudy MIAN SSSR, 134, 1975, 260–277 | Zbl

[3] G.N. Kazimirov, Priblizhenie algebraicheskimi mnogochlenami funktsii s dannym $k$-m obobschennym modulem gladkosti, Dis. ... kand. fiz.-mat. nauk: 01.01.01, M., 1995, 106 pp.

[4] G.N. Kazimirov, “Ekvivalentnaya strukturnaya kharakteristika dannogo obobschennogo modulya gladkosti”, Problemy fiziki, matematiki i tekhniki, 2010, no. 3 (4), 49–51