Equivalent of the struсtural characteristic of a complex process modeled by algebraical polynomials
Problemy fiziki, matematiki i tehniki, no. 3 (2018), pp. 76-79
Cet article a éte moissonné depuis la source Math-Net.Ru
The equivalence of the generalized modulus of smoothness defined by the generalized shift operator of Jacobi type and the $K$-functional of Petre is proved.
Keywords:
generalized Jacobi shift operator, generalized modulus of smoothness, $K$-functional.
@article{PFMT_2018_3_a12,
author = {G. N. Kazimirov},
title = {Equivalent of the stru{\cyrs}tural characteristic of a complex process modeled by algebraical polynomials},
journal = {Problemy fiziki, matematiki i tehniki},
pages = {76--79},
year = {2018},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/PFMT_2018_3_a12/}
}
G. N. Kazimirov. Equivalent of the struсtural characteristic of a complex process modeled by algebraical polynomials. Problemy fiziki, matematiki i tehniki, no. 3 (2018), pp. 76-79. http://geodesic.mathdoc.fr/item/PFMT_2018_3_a12/
[1] G. N. Kazimirov, “Ob odnom podkhode k uproscheniyu modeli slozhnogo protsessa na osnove algebraicheskikh mnogochlenov”, Izvestiya Gomelskogo gosudarstvennogo universiteta im. F. Skoriny, 2002, no. 6 (15), 171–174
[2] M.K. Potapov, “O strukturnykh kharakteristikakh klassov funktsii s dannym poryadkom nailuchshego priblizheniya”, Trudy MIAN SSSR, 134, 1975, 260–277 | Zbl
[3] G.N. Kazimirov, Priblizhenie algebraicheskimi mnogochlenami funktsii s dannym $k$-m obobschennym modulem gladkosti, Dis. ... kand. fiz.-mat. nauk: 01.01.01, M., 1995, 106 pp.
[4] G.N. Kazimirov, “Ekvivalentnaya strukturnaya kharakteristika dannogo obobschennogo modulya gladkosti”, Problemy fiziki, matematiki i tekhniki, 2010, no. 3 (4), 49–51