Permutability of elements in polyadic groupoids of special form
Problemy fiziki, matematiki i tehniki, no. 3 (2018), pp. 70-75.

Voir la notice de l'article provenant de la source Math-Net.Ru

The permutability of elements in polyadic groupoids with polyadic operation $\eta_{s,\sigma,k}$, which is determined on a $k$-th Cartesian power $A^k$ of $n$-ary groupoid $\langle A,\eta\rangle$ with the substitution $\sigma$ of the set $\{1,\dots,k\}$ and $n$-ary operation $\eta$ is studied.
Keywords: semigroup, polyadic operation, semiabelianness, neutral sequence.
@article{PFMT_2018_3_a11,
     author = {A. M. Gal'mak},
     title = {Permutability of elements in polyadic groupoids of special form},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {70--75},
     publisher = {mathdoc},
     number = {3},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2018_3_a11/}
}
TY  - JOUR
AU  - A. M. Gal'mak
TI  - Permutability of elements in polyadic groupoids of special form
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2018
SP  - 70
EP  - 75
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2018_3_a11/
LA  - ru
ID  - PFMT_2018_3_a11
ER  - 
%0 Journal Article
%A A. M. Gal'mak
%T Permutability of elements in polyadic groupoids of special form
%J Problemy fiziki, matematiki i tehniki
%D 2018
%P 70-75
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2018_3_a11/
%G ru
%F PFMT_2018_3_a11
A. M. Gal'mak. Permutability of elements in polyadic groupoids of special form. Problemy fiziki, matematiki i tehniki, no. 3 (2018), pp. 70-75. http://geodesic.mathdoc.fr/item/PFMT_2018_3_a11/

[1] A.M. Galmak, A.D Rusakov, “O poliadicheskikh operatsiyakh na dekartovykh stepenyakh”, Izvestiya GGU im. F. Skoriny, 2014, no. 3 (84), 35–40

[2] A.M. Galmak, “Mnogomestnye assotsiativnye operatsii na dekartovykh stepenyakh”, Vestsi NAN Belarusi, 2008, no. 3, 28–34

[3] A.M. Galmak, Mnogomestnye operatsii na dekartovykh stepenyakh, Izd. tsentr BGU, Minsk, 2009, 265 pp.

[4] E.L. Post, “Polyadic groups”, Trans. Amer. Math. Soc., 48:2 (1940), 208–350 | DOI | MR

[5] A.M. Galmak, “Ob operatsii $[\,]_{l,\sigma,k}$”, Vesnik MDU imya A. A. Kulyashova, 2010, no. 1(35), 34–38

[6] A.D. Rusakov, “O nepoluassotsiativnosti poliadicheskoi operatsii $\eta_{s,\sigma,k}$”, Problemy fiziki, matematiki i tekhniki, 2017, no. 1 (30), 68–72

[7] A.D. Rusakov, M.V. Selkin, “Novye kriterii assotsiativnosti $l$-arnoi operatsii $\eta_{s,\sigma,k}$”, Problemy fiziki, matematiki i tekhniki, 2018, no. 2 (35), 76–79

[8] A.M. Galmak, “O razreshimosti uravnenii v $\langle A^k, \eta_{s,\sigma,k}\rangle$”, Vesnik MDU imya A.A. Kulyashova, 2018, no. 1 (35), 34–38

[9] W. Dörnte, “Untersuchungen über einen verallgemeinerten Gruppenbegrieff”, Math. Z., 29 (1928), 1–19 | DOI | MR | Zbl

[10] A.M. Galmak, G.N. Vorobev, Ternarnye gruppy otrazhenii, Belaruskaya navuka, Minsk, 1998, 128 pp.

[11] A.M. Galmak, Yu.I. Kulazhenko, “O ne $n$-poluabelevosti poliadicheskikh gruppoidov spetsialnogo vida”, XII shkola-konferentsiya po teorii grupp, Tez. dokl. (Gelendzhik, 2018), 34–38