The condition of the absence of strongly irregular periodic solutions of the system of two linear discrete periodic equations
Problemy fiziki, matematiki i tehniki, no. 3 (2018), pp. 67-69.

Voir la notice de l'article provenant de la source Math-Net.Ru

The necessary condition under which the system of two linear discrete periodic equations has strongly irregular periodic solutions was obtained.
Keywords: strongly irregular periodic solution, linear discrete system, periodic equation.
@article{PFMT_2018_3_a10,
     author = {M. S. Belokursky and A. K. Demenchuk},
     title = {The condition of the absence of strongly irregular periodic solutions of the system of two linear discrete periodic equations},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {67--69},
     publisher = {mathdoc},
     number = {3},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2018_3_a10/}
}
TY  - JOUR
AU  - M. S. Belokursky
AU  - A. K. Demenchuk
TI  - The condition of the absence of strongly irregular periodic solutions of the system of two linear discrete periodic equations
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2018
SP  - 67
EP  - 69
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2018_3_a10/
LA  - ru
ID  - PFMT_2018_3_a10
ER  - 
%0 Journal Article
%A M. S. Belokursky
%A A. K. Demenchuk
%T The condition of the absence of strongly irregular periodic solutions of the system of two linear discrete periodic equations
%J Problemy fiziki, matematiki i tehniki
%D 2018
%P 67-69
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2018_3_a10/
%G ru
%F PFMT_2018_3_a10
M. S. Belokursky; A. K. Demenchuk. The condition of the absence of strongly irregular periodic solutions of the system of two linear discrete periodic equations. Problemy fiziki, matematiki i tehniki, no. 3 (2018), pp. 67-69. http://geodesic.mathdoc.fr/item/PFMT_2018_3_a10/

[1] R.P. Agarwal, Difference equations and inequalities: theory, methods and applications, Marcel Dekker, New York, 1992, 971 pp. | MR | Zbl

[2] R.F. Agarwal, J. Popenda, “Periodic Solutions of First Order Linear Difference Equations”, Math. Comput. Model., 22:1 (1995), 11–19 | DOI | MR | Zbl

[3] K.R. Janglajew, E.L. Schmeidel, “Periodicity of solutions of nonhomogeneous linear difference equations”, Advances in Difference Equations, 2012:1 (2012), 195–205 | DOI | MR

[4] S. Elaydi, An introduction to difference equations, Springer, New York, 2005, 539 pp. | MR | Zbl

[5] J.L. Massera, “Observaciones sobre les soluciones periodicas de ecuaciones diferenciales”, Bol. de la Facultad de Ingenieria, 4:1 (1950), 37–45 | MR

[6] Ya. Kurtsveil, O. Veivoda, “O periodicheskikh i pochti periodicheskikh resheniyakh sistem obyknovennykh differentsialnykh uravnenii”, Chekhosl. matem. zhurnal, 5:3 (1955), 362–370 | Zbl

[7] N.P. Erugin, “O periodicheskikh resheniyakh lineinoi odnorodnoi sistemy differentsialnykh uravnenii”, Dokl. AN BSSR, 6:7 (1962), 407–410 | Zbl

[8] A.K. Demenchuk, Asinkhronnye kolebaniya v differentsialnykh sistemakh. Usloviya suschestvovaniya i upravleniya, Lambert Academic Publishing, Saarbrucken, 2012, 186 pp.

[9] A.V. Lasunskii, “O periode reshenii diskretnogo periodicheskogo logisticheskogo uravneniya”, Trudy Karelskogo nauchnogo tsentra RAN, 2012, no. 5, 44–48

[10] A.K. Demenchuk, “O silno neregulyarnykh periodicheskikh resheniyakh lineinogo odnorodnogo diskretnogo uravneniya pervogo poryadka”, Doklady NAN Belarusi, 62:3 (2018), 263–267