The field of gravity of a massive spherical shell
Problemy fiziki, matematiki i tehniki, no. 3 (2018), pp. 19-22.

Voir la notice de l'article provenant de la source Math-Net.Ru

Expressions for the magnitude and potential of the gravitational field of a massive spherical shell are obtained. It is shown that the differential equation obtained for the intensity is nonlinear. The relations obtained are a generalization for the strength and potential of the gravitational field in the nonrelativistic case.
Keywords: theory of gravitation, gravitational field intensity, field potential.
@article{PFMT_2018_3_a1,
     author = {N. A. Akhramenko},
     title = {The field of gravity of a massive spherical shell},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {19--22},
     publisher = {mathdoc},
     number = {3},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2018_3_a1/}
}
TY  - JOUR
AU  - N. A. Akhramenko
TI  - The field of gravity of a massive spherical shell
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2018
SP  - 19
EP  - 22
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2018_3_a1/
LA  - ru
ID  - PFMT_2018_3_a1
ER  - 
%0 Journal Article
%A N. A. Akhramenko
%T The field of gravity of a massive spherical shell
%J Problemy fiziki, matematiki i tehniki
%D 2018
%P 19-22
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2018_3_a1/
%G ru
%F PFMT_2018_3_a1
N. A. Akhramenko. The field of gravity of a massive spherical shell. Problemy fiziki, matematiki i tehniki, no. 3 (2018), pp. 19-22. http://geodesic.mathdoc.fr/item/PFMT_2018_3_a1/

[1] D.V. Sivukhin, Obschii kurs fiziki, v 5-i t., v. 1, Mekhanika, Fizmatlit, M., 2005, 560 pp.

[2] I.V. Savelev, Kurs fiziki, v 3 t., v. 1, Mekhanika. Molekulyarnaya fizika, Nauka, M., 1989, 352 pp.

[3] A.N. Matveev, Mekhanika i teoriya otnositelnosti, ONIKS 21 vek, M., 2003, 432 pp.

[4] A.A. Detlaf, B.M. Yavorskii, Kurs fiziki, Vyssh. shk., M., 1989, 608 pp.

[5] B.M. Yavorskii, A.A. Detlaf, Spravochnik po fizike, Nauka, M., 1990, 624 pp.

[6] N.A. Akhramenko, L.M. Bulavko, “K opredeleniyu elektricheskogo polya ravnomerno zaryazhennoi sfery”, Vestnik BGU. Seriya 1, 2005, no. 3, 40–43

[7] L. Brillyuen, Novyi vzglyad na teoriyu otnositelnosti, Mir, M., 1972, 143 pp.

[8] A.N. Serdyukov, Kalibrovochnaya teoriya skalyarnogo gravitatsionnogo polya, Izd-vo Gomelskogo gos. un-ta, Gomel, 2005, 257 pp.

[9] L.D. Landau, E.M. Lifshits, Teoreticheskaya fizika, v. 2, Teoriya polya, Nauka, M., 1988, 512 pp.