Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PFMT_2018_3_a1, author = {N. A. Akhramenko}, title = {The field of gravity of a massive spherical shell}, journal = {Problemy fiziki, matematiki i tehniki}, pages = {19--22}, publisher = {mathdoc}, number = {3}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/PFMT_2018_3_a1/} }
N. A. Akhramenko. The field of gravity of a massive spherical shell. Problemy fiziki, matematiki i tehniki, no. 3 (2018), pp. 19-22. http://geodesic.mathdoc.fr/item/PFMT_2018_3_a1/
[1] D.V. Sivukhin, Obschii kurs fiziki, v 5-i t., v. 1, Mekhanika, Fizmatlit, M., 2005, 560 pp.
[2] I.V. Savelev, Kurs fiziki, v 3 t., v. 1, Mekhanika. Molekulyarnaya fizika, Nauka, M., 1989, 352 pp.
[3] A.N. Matveev, Mekhanika i teoriya otnositelnosti, ONIKS 21 vek, M., 2003, 432 pp.
[4] A.A. Detlaf, B.M. Yavorskii, Kurs fiziki, Vyssh. shk., M., 1989, 608 pp.
[5] B.M. Yavorskii, A.A. Detlaf, Spravochnik po fizike, Nauka, M., 1990, 624 pp.
[6] N.A. Akhramenko, L.M. Bulavko, “K opredeleniyu elektricheskogo polya ravnomerno zaryazhennoi sfery”, Vestnik BGU. Seriya 1, 2005, no. 3, 40–43
[7] L. Brillyuen, Novyi vzglyad na teoriyu otnositelnosti, Mir, M., 1972, 143 pp.
[8] A.N. Serdyukov, Kalibrovochnaya teoriya skalyarnogo gravitatsionnogo polya, Izd-vo Gomelskogo gos. un-ta, Gomel, 2005, 257 pp.
[9] L.D. Landau, E.M. Lifshits, Teoreticheskaya fizika, v. 2, Teoriya polya, Nauka, M., 1988, 512 pp.