Some criteria for the nonsimplicity of finite groups
Problemy fiziki, matematiki i tehniki, no. 2 (2018), pp. 60-68.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $|G|=\prod_{i=1}^n p_i^{\alpha_i}$, where $p_i$ are prime numbers, $p_i\ne p_j$ for $i\ne j$. Let $\pi(G)=\{p_1,\dots,p_n\}$, $s\in\pi(G)$ and let $\mathfrak{T}$ is the set of some Sylow subgroups of the group $G$, that are taken one at a time for every $p_i\in\pi(G)\setminus\{s\}$, $i=\overline{1,n-1}$. It is proved that if every subgroup from the set $\mathfrak{T}$ normalises some non-identity $s$-subgroup from $G$, $s>3$, then $G$ has solvable normal subgroup $R$ and $s$ divide $|R|$.
Keywords: finite group, Sylow subgroup
Mots-clés : $s$-solvable group.
@article{PFMT_2018_2_a8,
     author = {E. M. Palchik and S. Yu. Bashun},
     title = {Some criteria for the nonsimplicity of finite groups},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {60--68},
     publisher = {mathdoc},
     number = {2},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2018_2_a8/}
}
TY  - JOUR
AU  - E. M. Palchik
AU  - S. Yu. Bashun
TI  - Some criteria for the nonsimplicity of finite groups
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2018
SP  - 60
EP  - 68
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2018_2_a8/
LA  - ru
ID  - PFMT_2018_2_a8
ER  - 
%0 Journal Article
%A E. M. Palchik
%A S. Yu. Bashun
%T Some criteria for the nonsimplicity of finite groups
%J Problemy fiziki, matematiki i tehniki
%D 2018
%P 60-68
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2018_2_a8/
%G ru
%F PFMT_2018_2_a8
E. M. Palchik; S. Yu. Bashun. Some criteria for the nonsimplicity of finite groups. Problemy fiziki, matematiki i tehniki, no. 2 (2018), pp. 60-68. http://geodesic.mathdoc.fr/item/PFMT_2018_2_a8/

[1] B. Huppert, Endliche Gruppen, Springer, Berlin, 1967, 793 pp. | MR | Zbl

[2] D. Gorenstein, Konechnye prostye gruppy. Vvedenie v ikh klassifikatsiyu, Mir, M., 1985

[3] D. Gorenstein, R. Lyons, The local structure of the finite groups of characteristic 2 type, Memories AMS, 42, no. 276, 1983, 731 pp. | MR

[4] D. Gorenstein, R. Lyons, R. Solomon, The classification of the finite simple groups, Math. Surveys and Monographs, 40, no. 3, AMS, Providence R. I., 1998, 419 pp. | MR | Zbl

[5] V.N. Tyutyanov, L.A. Shemetkov, “Troinye faktorizatsii v konechnykh gruppakh”, Doklady NAN Belarusi, 46:4 (2002), 52–55

[6] A.S. Kondratev, V.D. Mazurov, “2-signalizatory konechnykh prostykh grupp”, Algebra i logika, 42:5 (2003), 594–623 | Zbl

[7] S.A. Syskin, “Abstraktnye svoistva prostykh sporadicheskikh grupp”, Uspekhi matem. nauk, 35:5(215) (1980), 181–212 | Zbl

[8] R. Wilson, The Finite simple groups, Springer-Verlag, London, 2009 | MR | Zbl

[9] L.A. Shemetkov, Formatsii konechnykh grupp, Nauka, M., 1978

[10] E.M. Palchik, “Konechnye prostye gruppy s faktorizatsiei $G=G_\pi B$, $2\notin\pi$”, Trudy Instituta matematiki i mekhaniki UrO RAN, 20, no. 2, 2014, 242–249 | MR

[11] M. Aschbacher, P. Kledman, “On a conjecture of Quillen and a lemma of Robinson”, Arch. Math., 55:3 (1990), 209–217 | DOI | MR | Zbl